精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为(
A.70°
B.35°
C.20°
D.40°

【答案】D
【解析】解:∵AC是圆O的切线,AB是圆O的直径, ∴AB⊥AC.
∴∠CAB=90°.
又∵∠C=70°,
∴∠CBA=20°.
∴∠DOA=40°.
故选:D.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在

(1)比较∠BAD和∠DAC的大小。
(2)求sin∠BAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,tanB= ,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图(1),AB∥CD,探究∠BED与∠B+∠D的关系

(2)如图(2),AB∥CD,类比上述方法,试探究∠E+∠G与∠B+∠F+∠D的关系,并写出推理过程;

(3)如图(3),AB∥CD,请直接写出你能得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.

查看答案和解析>>

同步练习册答案