精英家教网 > 初中数学 > 题目详情
14.AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有(  )
A.1个B.2个C.3个D.4个

分析 根据三角形中线的定义可得BD=CD,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE,最后根据等底等高的三角形的面积相等判断出②正确.

解答 解:∵AD是△ABC的中线,
∴BD=CD,
在△BDF和△CDE中,
$\left\{\begin{array}{l}{BD=CD}\\{∠BDF=∠CDE}\\{DE=DF}\end{array}\right.$,
∴△BDF≌△CDE(SAS),故④正确
∴CE=BF,∠F=∠CED,故①正确,
∴BF∥CE,故③正确,
∵BD=CD,点A到BD、CD的距离相等,
∴△ABD和△ACD面积相等,故②正确,
综上所述,正确的是①②③④.
故答案为:①②③④.

点评 本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知一次函数y=(2m+4)x+(8-n).
(1)当m,n是什么数时,y随x的增大而增大?
(2)当m,n是什么数时,函数图象与y轴的交点在x轴的下方?
(3)当m,n是什么数时,函数的图象经过原点?
(4)当m=-1,n=2时,求此函数的图象与两坐标轴的交点的坐标;
(5)若函数的图象经过经过第一、二、三象限,求m,n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.把函数y=3x的图象沿着y轴向上平移一个单位,则得到的图象函数关系式是y=3x+1,再沿着y轴向下平移三个单位得到y=3x-2,再沿着x轴向左平移二个单位得到y=3x+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=ax2+bx+3c(b<0)交x轴于A、B两点(A在B点左侧),交y轴负半轴于点C,对称轴为直线$x=-\frac{b}{2}$.
(1)当b=c=-4时,求抛物线在x轴上截得的线段长;
(2)如图,过点B的直线交y轴于点D,且BD⊥AC于点E,若OE平分∠AEB,CD=2OD,求抛物线的解析式;
(3)在(2)的条件下,已知M、N是抛物线上两点,且以M、N、O、B为顶点的四边形是以OB为对角线的平行四边形,求直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若A(x1,y1),B(x2,y2)为一次函数y=3x-1图象上的两个不同的点,且x1x2≠0,x1<x2,设$M=\frac{{1+{y_1}}}{x_1},N=\frac{{1+{y_2}}}{x_2}$,则(  )
A.M>NB.M=NC.M<ND.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,BE⊥CD,BE=DE,BC=DA.
求证:
(1)△BEC≌△DAE;
(2)DF⊥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某公司今年投资100万元购买生产设备,生产某种产品,已知这种产品的生产成本为每件10元,经过市场调研发现,该产品的销售单价定在15元到30元之间较为合理,生产的产品能全部销售,且该产品的年销售量y(万元)与销售单价x(元/件)之间的函数关系式为y=40-x(15≤x≤30).
(1)当销售单价定为每件26元时,该产品的年销售量为多少万件?
(2)求今年的年获利W(万元)与销售单价x(元/件)之间的函数关系式;
(3)求今年的年获利W(万元)的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.
(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?说明理由.         
(2)若∠CEB=60°,求∠EFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,一次函数y=kx-4的图象与反比例函数y=$\frac{n}{x}$的图象交于M、N两点,其中点M的坐标为(3,2),则k,n的值为(  )
A.2,2B.3,8C.2,6D.-2,-8

查看答案和解析>>

同步练习册答案