分析 (1)过C作CE⊥AB于E,根据等腰三角形的性质得到∠ACE=$\frac{1}{2}∠$ACB,AB=2AE,由已知条件得到∠ACE=∠ACD,根据角平分线的定义得到∠DAC=∠BAC,推出△ACD≌△ACE,根据全等三角形的性质得到AD=AE,于是得到结论;
(2)连接CE交BF于K,则K为△ABC的重心,设CK=2EK=2x,CE=BE=3x,根据角平分线的定义得到∠DAC=∠CAB=45°,推出△ACB是等腰直角三角形,由等腰直角三角形的性质得到CE⊥AB,AE=CE=BE,根据已知条件得到∠ACD=45°,推出△BEK≌△CEH,根据全等三角形的性质得到EK=CH=x,BK=EH=$\sqrt{10}$x,根据平行线分线段成比例定理得到$\frac{MH}{ME}=\frac{CH}{BE}=\frac{1}{3}$,求得MH=$\frac{1}{4}$EH=$\frac{\sqrt{10}}{4}$x,然后根据相似三角形的性质即可得到结论.
解答
解:(1)过C作CE⊥AB于E,
∵AC=BC,
∴∠ACE=$\frac{1}{2}∠$ACB,AB=2AE,
∵∠ACB=2∠ACD,
∴∠ACE=∠ACD,
∵AC平分∠BAD,
∴∠DAC=∠BAC,
在△ACD与△ACE中,
$\left\{\begin{array}{l}{∠DAC=∠EAC}\\{AC=AC}\\{∠DCA=∠ECA}\end{array}\right.$,
∴△ACD≌△ACE,
∴AD=AE,![]()
∴AB=2AD;
(2)连接CE交BF于K,则K为△ABC的重心,
∴设CK=2EK=2x,CE=BE=3x,
∵∠DAB=90°,AC平分∠DAB,
∴∠DAC=∠CAB=45°,
∵AC=BC,
∴△ACB是等腰直角三角形,
∴CE⊥AB,
∴AE=CE=BE,
∵∠ACB=2∠ACD,
∴∠ACD=45°,
∴AD=CD,∠ADC=90°,
∵EG⊥BF,
∴∠CEH=∠EBK,
在△BEK与△CEH中,
$\left\{\begin{array}{l}{∠ECH=∠KEB=90°}\\{BE=CE}\\{∠CEH=∠EBK}\end{array}\right.$,
∴△BEK≌△CEH,
∴EK=CH=x,BK=EH=$\sqrt{10}$x,
∵CH∥BE,∴$\frac{MH}{ME}=\frac{CH}{BE}=\frac{1}{3}$,
∴MH=$\frac{1}{4}$EH=$\frac{\sqrt{10}}{4}$x,
∵△BEG∽△BKH,
∴$\frac{BE}{BK}=\frac{EG}{KE}$,
∴EG=$\frac{2\sqrt{10}X}{10}$,
∴$\frac{MH}{EG}=\frac{5}{6}$.
点评 本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,等腰三角形的性质,证得△ABC是等腰直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2π | B. | 2π-$\sqrt{3}$ | C. | 2π-2$\sqrt{3}$ | D. | 2π-3$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | ±1 | D. | -$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com