精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,△AOB的内切圆的半径是(  )                                                                         

                                                                          

A.2                            B.3.5                          C.              D.4

                                                                                                       


A【考点】三角形的内切圆与内心;坐标与图形性质.                                   

【专题】压轴题;探究型.                                                                     

【分析】设直线AB的解析式是y=kx+b,把P(3,4)代入求出直线AB的解析式是y=kx+4﹣3k,求出OA=4﹣3k,OB=,求出△AOB的面积是OBOA=12﹣=12﹣(9k+),根据﹣9k﹣≥2=24和当且仅当﹣9k=﹣时,取等号求出k=﹣,求出OA=4﹣3k=8,OB==6,设三角形AOB的内切圆的半径是R,由三角形面积公式得:×6×8=×6R+×8R+×10R,求出即可.                                               

【解答】解:设直线AB的解析式是y=kx+b,                                         

把P(3,4)代入得:4=3k+b,                                                              

b=4﹣3k,                                                                                          

即直线AB的解析式是y=kx+4﹣3k,                                                       

当x=0时,y=4﹣3k,                                                                        

当y=0时,x=,                                                                            

即A(0,4﹣3k),B(,0),                                                    

△AOB的面积是OBOA=(4﹣3k)=12﹣=12﹣(9k+),                   

∵要使△AOB的面积最小,                                                                     

∴必须最大,                                                                       

∵k<0,                                                                                            

∴﹣k>0,                                                                                        

∵﹣9k﹣≥2=2×12=24,                                                     

当且仅当﹣9k=﹣时,取等号,解得:k=±,                                            

∵k<0,                                                                                            

∴k=﹣,                                                                                         

即OA=4﹣3k=8,OB==6,                                                            

根据勾股定理得:AB=10,                                                                      

设三角形AOB的内切圆的半径是R,                                                      

由三角形面积公式得:×6×8=×6R+×8R+×10R,                                    

R=2,                                                                                                

故选A.                                                                                            

【点评】本题考查了勾股定理,取最大值,三角形的面积,三角形的内切圆等知识点的应用,关键是求OA和OB的值,本题比较好,但是有一定的难度.                                                              

                                                                                                       


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是(     )

A.1+       B.2+       C.2﹣1   D.2+1

查看答案和解析>>

科目:初中数学 来源: 题型:


先化简,再求值:,其中x=﹣1.                  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.                                                 

(1)求BD的长;                                                                             

(2)若△DCN的面积为2,求四边形ABNM的面积.                                   

                                                               

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=      .                                             

                                                                   

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于(  )               

                                                                          

A.6                            B.5                            C.9                            D.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知长方形周长为20.

(1)写出长y关于宽x的函数解析式(x为自变量);

(2)在直角坐标系中,画出函数图像.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是

A.k>5           B.k<5              C.k>-5             D.k<-5

查看答案和解析>>

科目:初中数学 来源: 题型:


;               (

查看答案和解析>>

同步练习册答案