如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.
(1)求BD的长;
(2)若△DCN的面积为2,求四边形ABNM的面积.
【考点】相似三角形的判定与性质;平行四边形的性质.
【专题】几何综合题.
【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;
(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.
【解答】解:(1)∵平行四边形ABCD,
∴AD∥BC,AD=BC,OB=OD,
∴∠DMN=∠BCN,∠MDN=∠NBC,
∴△MND∽△CNB,
∴=,
∵M为AD中点,
∴MD=AD=BC,即=,
∴=,即BN=2DN,
设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,
∴x+1=2(x﹣1),
解得:x=3,
∴BD=2x=6;
(2)∵△MND∽△CNB,且相似比为1:2,
∴MN:CN=DN:BN=1:2,
∴S△MND=S△CND=1,S△BNC=2S△CND=4.
∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6
∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.
【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:
在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.
(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.
(1)求a的值;
(2)设这条直线与y轴相交于点D,求△OPD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,△AOB的内切圆的半径是( )
A.2 B.3.5 C. D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
下列命题中,是真命题的共有( )
①相等的角都是对顶角;②过一点有且只有一条直线与已知直线平行;
③若a∥b,b∥c,则a∥c;④同一平面内两条不相交的直线一定平行.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com