精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是

【答案】1
【解析】解:∵CG=2DG,CD=6, ∴CG=4,DG=2,
由勾股定理得,BG= =5,
∴EG=1,
由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,
∴△HEG∽△BCG,
= =
∴HG=
∴DH=DG﹣HG=
同理,DP=1,
所以答案是:1.

【考点精析】认真审题,首先需要了解矩形的性质(矩形的四个角都是直角,矩形的对角线相等),还要掌握翻折变换(折叠问题)(折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,D为线段BC的中点,AB=2AC=2,tan∠CAD=sin∠BAC,则BC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,反比例函数y= 的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.
(1)求平移后直线的表达式;
(2)求∠OBC的余切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.
(1)如果 ,DE=6,求边BC的长;
(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.
(1)求点O′的高度O′C;(精确到0.1cm)
(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)
(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度? 参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC,BC,DB,DC.
(1)求这条抛物线的表达式及顶点D的坐标;
(2)求证:△ACO∽△DBC;
(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,两个建筑物AB和CD的水平距离为51m,某同学住在建筑物AB内10楼M室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.( 取1.73,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(4,0),B(3,3),以OA、AB为边作OABC,则若一个反比例函数的图象经过C点,则这个反比例函数的表达式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当x<0时,反比例函数 的图像(
A.在第二象限内,y随x的增大而减小
B.在第二象限内,y随x的增大而增大
C.在第三象限内,y随x的增大而减小
D.在第三象限内,y随x的增大而增大

查看答案和解析>>

同步练习册答案