【题目】(问题背景)如图1所示,在中,,,点D为直线上的个动点(不与B、C重合),连结,将线段绕点D按顺时针方向旋转90°,使点A旋转到点E,连结.
(问题初探)如果点D在线段上运动,通过观察、交流,小明形成了以下的解题思路:过点E作交直线于F,如图2所示,通过证明______,可推证是_____三角形,从而求得______°.
(继续探究)如果点D在线段的延长线上运动,如图3所示,求出的度数.
(拓展延伸)连接,当点D在直线上运动时,若,请直接写出的最小值.
图1 图2 图3
【答案】(1)△ADB,等腰直角,135°;(2)45°;(3).
【解析】
(1)问题初探:由旋转的性质得到∠ADE=90°,AD=DE,则∠ADB+∠EDF=∠ADB+∠DAB=90°,得到∠DAB=∠EDF,则根据AAS得到△DEF≌△ADB;则EF=BD,DF=AB,则AB=AC=DF,得到BD=CF=EF,则△CEF是等腰直角三角形;从而得到∠DCE=135°;
(2)继续探究:过点E作EG⊥CD,与(1)同理,可证△ABD≌△DGE,得到BD=GE,AB=DG=BC,则BD=CG=GE,即可得到;
(3)拓展延伸:当点D在直线BC上运动时,当BE⊥CE时,BE的长度是最小值,由(2)可知,则△BCE为等腰直角三角形,则.
解:(1)问题初探:如图,
由旋转的性质,得:∠ADE=90°,AD=DE,
∴∠ADB+∠EDF=90°,
∵∠ABC=90°,
∴∠ADB+∠DAB=90°,
∴∠DAB=∠EDF,
∵EF⊥BC,
∴∠ABC=∠DFE=90°,
∴△ADB≌△DEF(AAS);
∴BD=EF,AB=DF,
∴AB=DF=BC,
∴BD+DC=DC+CF,
∴BD=CF=EF,
∴△CEF是等腰直角三角形;
∴∠CEF=45°,
∴∠DCE=∠CEF+∠CFE=45°+90°=135°;
故答案为:△ADB,等腰直角,135°;
(2)继续探究:如图,过点E作EG⊥CD,
∵∠ADE=∠ADB+∠GDE=90°,∠ADB+∠DAB=90°,
∴∠GDE=∠DAB,
∵∠ABD=∠DGE=90°,AD=DE,
∴△ABD≌△DGE(AAS),
∴BD=GE,AB=DG=BC,
∴BD+BG=BG+GC,
∴CG=BD=GE,
∴△CEG是等腰直角三角形,
∴∠DCE=45°;
(3)拓展延伸:如图,当点D在直线BC上运动时,当BE⊥CE时,BE的长度是最小值;
则∠BEC=90°.
由(2)可知,∠DCE=45°,
∴△BCE是等腰直角三角形,
∴BE=CE,
∵,
∴;
∴BE的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.
(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;
(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】()如图①,在四边形中,,,、分别是边、上的点,且.
求证:.
()如图②,在四边形中,,,、分别是边、上的点,且,()中的结论是否仍然成立?
()如图③,在四边形中,,,、分别是边、延长线上的点,且.()中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于函数的图象,下列结论错误的是( )
A.图象经过一、二、四象限
B.与轴的交点坐标为
C.随的增大而减小
D.图象与两坐标轴相交所形成的直角三角形的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块全等的含30°角的三角尺按如图1所示的方式摆放在一起,它们较短的直角边BC=EC=3.
(1)将△ECD沿直线l向左平移到图2的位置,使点E′落在AB上,则CC′= ;
(2)将△ECD绕点C逆时针旋转到图3的位置,使点E′落在AB上,则△ECD绕点C旋转的度数为 ;
(3)将△ECD沿直线AC翻折到图4的位置,ED′与AB相交于点F,求证:AF=FD′.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com