【题目】如图:在平行四边形ABCD中,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:CF=EF.
【答案】证明:∵四边形ABCD是平行四边形,
∴CD∥AB,CD=AB,
∴∠D=∠EAF,
∵BE=AD,AF=AB,
∴AE=DF,CD=AF,
在△CDF和△FAE中,
,
∴△DCF≌△AFE(SAS),
∴CF=EF.
【解析】由四边形ABCD是平行四边形,可得CD∥AB,CD=AB,即可证得∠D=∠EAF,又由BE=AD,AF=AB,易得AE=DF,CD=AF,然后由SAS证得△DCF≌△AFE,即可证得结论.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,AB=6,点P是AB边上的任意一点(点P不与点A、点B重合),过点P作PD⊥AB,交直线BC于点D,作PE⊥AC,垂足为点F.
(1)求∠APE的度数;
(2)连接DE,当△PDE为等边三角形时,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是()
A. t>33 B. t≤24 C. 24<t<33 D. 24≤t≤33
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,有矩形AOBC,点A、B的坐标分别为(0,4)、(10,0),点P的坐标为(2,0),点M在线段AO上,点N在线段AC上,总有∠MPN=90 ,点M从点O运动到点A,当点M运动到A点时,点N与点C重合(如图2)。令AM=x
(1).直接写出点C的坐标___________;
(2)、①设MN2=y,请写出y关于x的函数关系式,并求出y的最小值;
②连接AP交MN于点D,若MN⊥A P,求x的值;
(3)、当点M在边AO上运动时,∠PMN的大小是否发生变化?请说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,哪些适合抽样调查?哪些适合全面调查?
(1)工厂准备对一批即将出厂的饮料中含有细菌总数的情况进行调查;
(2)小明准备对全班同学所喜爱的球类运动的情况进行调查;
(3)某农田保护区对区内的水稻秧苗的高度进行调查.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com