精英家教网 > 初中数学 > 题目详情
16.实践操作题
如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2
(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=6a2+8ab+2b2
(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为(a+2b)(a+3b);
(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是a+3b;
(4)若取其中的六张B类卡片拼成一个如图  ④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.

分析 (1)画出图形,结合图形和面积公式得出即可;
(2)根据图形和面积公式得出即可;
(3)由完全平方公式可得三种纸片拼出一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,由此即可确定拼出的正方形的边长最长是多少;
(4)用两种方法求出阴影部分的面积,即整个矩形面积减去6个B类卡片和阴影部分矩形的面积列式即可.

解答 解:(1)如图:

(3a+b)(2a+2b)=6a2+8ab+2b2
(2)a2+5ab+6b2=(a+2b)(a+3b);
(3)∵有3张A类纸片,6张B类纸片,10张C类纸片,
∴由完全平方公式可得每种纸片至少取一张,把取出的这些纸片拼成一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,
所以拼出的正方形的边长最长可以为a+3b;
(4)整个矩形面积为:(a+2b)(a+b),6个B类卡片的面积为:6ab,
阴影部分矩形的面积为:(2b-a)(b-a),
(a+2b)(a+b)-6ab=a2+2b2-3ab,
(2b-a)(b-a)=a2+2b2-3ab,
∴(a+2b)(a+b)-6ab=(2b-a)(b-a),
故答案为:6a2+8ab+2b2;(a+2b)(a+3b);a+3b.

点评 本题考查了分解因式的应用,长方形的面积,完全平方公式的应用,主要考查学生的观察图形的能力和化简能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=4$\sqrt{5}$,∠BAC=45°.
(1)求点A,C的坐标;
(2)反比例函数y=$\frac{k}{x}$的图象经过点B,求k的值;
(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.方程$\frac{1}{1-x}+\frac{x}{x-1}$=-1的解是(  )
A.x=2B.x=1C.x=0D.无实数解

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6米,涵洞顶点O到水面的距离为2.4米,建立如图所示的直角坐标系.
(1)试写出涵洞所在抛物线的解析式;
(2)当水面上涨了1.4米时,求水面的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.水果批发商销售每箱进价为40元的长寿湖夏橙,市场调查发现,若以每箱60元的价格销售,平均每天销售300箱,价格每提高1元,平均每天少销售10箱.
(1)求平均每天销售量y箱与销售价x之间的函数关系式;
(2)要想获得6000元的利润则长寿湖夏橙的定价应是多少?
(3)当每箱长寿湖夏橙的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)请在图①中作出两条线,使它们将圆面四等分;
(2)如图②,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,矩形ABCD的长为20,宽为14,点O1为矩形的中心,⊙O2的半径为5,O1O2⊥AB于点P,O1O2=23.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边所在的直线相切的位置一共出现(  )
A.18次B.12次C.8次D.4次

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是$\frac{24}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.3D.无法确定

查看答案和解析>>

同步练习册答案