【题目】如图,C为射线AB上一点,AB=30,AC比BC的 多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论: ①BC=2AC;②AB=4NQ;③当PB= BQ时,t=12,其中正确结论的个数是( )
A.0
B.1
C.2
D.3
【答案】C
【解析】解:设BC=x, ∴AC= x+5
∵AC+BC=AB
∴x+ x+5=30,
解得:x=20,
∴BC=20,AC=10,
∴BC=2AC,故①成立,
∵AP=2t,BQ=t,
当0≤t≤15时,
此时点P在线段AB上,
∴BP=AB﹣AP=30﹣2t,
∵M是BP的中点
∴MB= BP=15﹣t
∵QM=MB+BQ,
∴QM=15,
∵N为QM的中点,
∴NQ= QM= ,
∴AB=4NQ,
当15<t≤30时,
此时点P在线段AB外,且点P在Q的左侧,
∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM= BP=t﹣15
∵QM=BQ﹣BM=15,
∵N为QM的中点,
∴NQ= QM= ,
∴AB=4NQ,
当t>30时,
此时点P在Q的右侧,
∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM= BP=t﹣15
∵QM=BQ﹣BM=15,
∵N为QM的中点,
∴NQ= QM= ,
∴AB=4NQ,
综上所述,AB=4NQ,故②正确,
当0<t≤15,PB= BQ时,此时点P在线段AB上,
∴AP=2t,BQ=t
∴PB=AB﹣AP=30﹣2t,
∴30﹣2t= t,
∴t=12,
当15<t≤30,PB= BQ时,此时点P在线段AB外,且点P在Q的左侧,
∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30= t,
t=20,
当t>30时,此时点P在Q的右侧,
∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30= t,
t=20,不符合t>30,
综上所述,当PB= BQ时,t=12或20,故③错误;
故选(C)
根据AC比BC的 多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.
科目:初中数学 来源: 题型:
【题目】已知动点P以每秒2cm的速度沿图甲的边框按BCDEFA的路径移动,相应的三角形ABP的面积S(cm2)与时间t(秒)之间的关系用图乙中的图象表示,若AB=6cm,试回答下列问题:
(1)图甲中的BC长是多少?
(2)图乙中的a是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=( )
A.8:1
B.6:1
C.5:1
D.4:1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上.
(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;
(思路提示:过点A作AD⊥x轴于点D,通过证明△BOC≌△CDA来达到目的.)
(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴 于E,问BD与AE有怎样的数量关系,并说明理由;
(3)如图3,直角边BC的两个端点在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京东某自营店去年10月份销量为x万元,今年比去年减少10%,则今年产值是( )
A. (1+10%)x万元 B. (1-10%x)万元 C. (1-10%)x万元 D. 10%x万元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com