【题目】如图,以矩形ABCD的边CD为直径作⊙O,点E是AB 的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.
(1)若连接AO,试判断四边形AECO的形状,并说明理由;
(2)求证:AH是⊙O的切线;
(3)若AB=6,CH=2,则AH的长为 .
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)根据矩形的性质得到AE∥OC,AE=OC即可证明;
(2)根据平行四边形的性质得到∠AOD=∠OCF,∠AOF=∠OFC,再根据等腰三角形的性质得到∠OCF=∠OFC.故可得∠AOD=∠AOF,利用SAS证明△AOD≌△AOF,由ADO=90°得到AH⊥OF,即可证明;
(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt△ABH中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.
(1)解:连接AO,四边形AECO是平行四边形.
∵四边形ABCD是矩形,
∴AB∥CD,AB=CD.
∵E是AB的中点,
∴AE=AB.
∵CD是⊙O的直径,
∴OC=CD.∴AE∥OC,AE=OC.
∴四边形AECO为平行四边形.
(2)证明:由(1)得,四边形AECO为平行四边形,
∴AO∥EC
∴∠AOD=∠OCF,∠AOF=∠OFC.
∵OF=OC
∴∠OCF=∠OFC.
∴∠AOD=∠AOF.
∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF
∴△AOD≌△AOF.
∴∠ADO=∠AFO.
∵四边形ABCD是矩形,
∴∠ADO=90°.
∴∠AFO=90°,即AH⊥OF.
∵点F在⊙O上,
∴AH是⊙O的切线.
(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线
∴AD=AF,CH=FH=2,
设AD=x,则AF=x,AH=x+2,BH=x-2,
在Rt△ABH中,AH2=AB2+BH2,
即(x+2)2=62+(x-2)2,
解得x=
∴AH=+2=.
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3经过点A(﹣1,0),B(3,0),与y轴交于点C.点D(xD,yD)为抛物线上一个动点,其中1<xD<3.连接AC,BC,DB,DC.
(1)求该抛物线的解析式;
(2)当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:
(1)本次调查的学生有多少人?
(2)补全上面的条形统计图;
(3)扇形统计图中C对应的中心角度数是_____;
(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)当C为抛物线顶点的时候,求的面积.
(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com