精英家教网 > 初中数学 > 题目详情

【题目】如图,ADRtABC斜边BC上的中线,过AD两点的⊙OACE,弦EFBC

1)求证:ADEF

2)若OAC边上,且⊙OBC边相切,当EF2时,求的长.

【答案】(1)详见解析;(2)π

【解析】

1)连接DF,根据直角三角形斜边中线的性质得出AD=CD,得出∠DAC=C,根据圆周角定理得出∠DFE=DAC,即可得出∠DFE=C,根据平行线的性质和判定即可证得FDEC,得出四边形EFDC是平行四边形,即可证得结论;

2)连接OFDE,根据直角三角形斜边中线的性质和切线的性质得出∠DAC=C=EDC,根据圆周角定理得出∠ADE=90°,根据三角形内角和定理求得∠C=30°,根据平行线的性质和等腰三角形的性质得出∠EOF=120°,解直角三角形求得半径的长,然后根据弧长公式即可求得.

1)如图,连接DF

ADRt△ABC斜边BC上的中线,

∴ADDC

∴∠DAC∠C

∵∠DFE∠DAC

∴∠DFE∠C

∵EF∥BC

∴∠CEF+∠C180°

∴∠DFE+∠CEF180°

∴FD∥EC

四边形EFDC是平行四边形,

∴EFDC

∴ADEF

2)如图,连接OFDE

∵ADRt△ABC斜边BC上的中线,

∴ADDC

∴∠DAC∠C

∵⊙OBC边相切,

∴∠EDC∠DAC

∴∠EDC∠C

∵AE是直径,

∴∠ADE90°

∵∠ADC+∠DAC+∠C180°

∴90°+3∠C180°

∴∠C30°

∵EF∥BC

∴∠OEF∠C30°

∴OE

∵OEOF

∴∠OFE∠OEF30°

∴∠EOF120°

的长=π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若△ABC中,其中一个内角是另一个内角的一半,则称△ABC为“半角三角形”.

1)若RtABC为半角三角形,∠A=90°,则其余两个角的度数为.

2)如图,以△ABC的边AB为直径画圆,与边AC交于M,与边BC交于N,已知CN=AC

①求证:∠C=60°.

②若△ABC是半角三角形,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1C2关联.

1)已知抛物线C1y=﹣2x2+4x+3C2y2x2+4x1,请判断抛物线C1与抛物线C2是否关联,并说明理由.

2)抛物线C1,动点P的坐标为(t2),将抛物线绕点P旋转180°得到抛物线C2,若抛物线C1C2关联,求抛物线C2的解析式.

3)点A为抛物线C1的顶点,点B为抛物线C1关联的抛物线的顶点,是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在直线x=﹣10上?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,以下结论:①abc0;②4acb2;③2a+b0;④其顶点坐标为(,﹣2);⑤当x时,yx的增大而减小;⑥a+b+c0正确的有(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的93日是中国人民抗日战争胜利纪念日,某红色旅游景区为纪念抗日战争胜利73周年,今年9~10月份,对团体购买门票实行优惠,决定在原定票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200.

(1)求每张门票的原定票价;

(2)根据实际情况,该景区决定对网上购票的个人也采取优惠,原定票价经过连续两次降价后票价为每张32.4元,求原定票价平均每次的下降率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图像与轴交于两点,交轴于点,点是二次函数图像上的一对对称点,一次函数的图像经过

1)请直接写出点的坐标;

2)求二次函数的解析式;

3)根据图像直接写出使一次函数值大于二次函数值的的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.

(1)求反比例函数和一次函数的解析式;

(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线x轴交于AB两点(点A在点B左侧),与y轴交于点D,点C为抛物线的顶点,过BC两点作直线BC,抛物线上的一点F的横坐标是,过点F作直线FG//BCx轴于点G.

1)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EFPF,当的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;

2)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别为点A′,点C′,连接A′C′A′KC′KA′C′K是否能为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案