精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣

(1)ka、b的值;

(2)求不等式kx+1>ax2+bx﹣2的解集.

【答案】(1)k=﹣1,;(2)﹣6<x<1.

【解析】

(1)首先把A的坐标代入一次函数解析式即可求得k的值,根据对称轴即可得到一个关于ab的式子,然后把A代入二次函数解析式,解所得到的两个式子组成的方程组即可求得ab的值;

(2)解一次函数解析式和二次函数解析式组成的方程组,求得B的坐标,然后根据图象求解.

(1)A(1,0)代入一次函数解析式得:k+1=0,解得:k=﹣1,

根据题意得:

解得:

(2)解方程组

解得:

则点B的坐标是(﹣6,7).

根据图象可得不等式kx+1>ax2+bx﹣2的解集是:﹣6<x<1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,正比例函数yx的图象与反比例函数yk0)的图象交于点A(﹣2,﹣2),其中将直线OA向上平移3个单位后与y轴交于点C,与反比例函数在第三象限内交点为B(﹣4m).

1)求该反比例函数的解析式与平移后的直线解析式;

2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象

(3)该函数的图象经过怎样的平移得到y=x2的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中抛物线y1axx﹣2)x轴交于OA两点顶点为M对称轴BM交抛物线于点Bx轴于点C连接OBABOMAM已知0<a<4,四边形OMAB的面积为S

特例探究填表

归纳证明

a=2证明四边形OMAB是菱形

拓展应用

(1)将抛物线y1axx﹣2)改为抛物线y3axx﹣2m)(m>0),其他条件不变当四边形OMAB为正方形时a   m   

(2)将抛物线y1axx﹣2)改为抛物线y3axx﹣2m)(m>0),其他条件不变S   用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017辽宁省盘锦市,第18题,3分)如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线于点B1B2,过点B2y轴的平行线交直线y=x于点A2,过点A2x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一组自然数1,2,3…k,去掉其中一个数后剩下的数的平均数为16,则去掉的数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.

(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;

(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线(其中为常数,)取不同数值时,可得不同直线,请研究这些直线的共同特征.

实践操作

1)当时,直线的解析式为________,请在图1中画出图象.

时,直线的解析式为________,请在图2中画出图象

2)探索发现:

直线必经过点(______________)

3)类比迁移:

矩形如图2所示,若直线分矩形的面积为相等的两部分,请在图中直接画出这条直线.

查看答案和解析>>

同步练习册答案