【题目】已知直线(其中为常数,),取不同数值时,可得不同直线,请研究这些直线的共同特征.
实践操作
(1)当时,直线的解析式为________,请在图1中画出图象.
当时,直线的解析式为________,请在图2中画出图象
(2)探索发现:
直线必经过点(_______,_______).
(3)类比迁移:
矩形如图2所示,若直线分矩形的面积为相等的两部分,请在图中直接画出这条直线.
【答案】(1):;:;(2),;(3)画图见解析.
【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可, (2)把转化为,可得无论k取何值(0除外),直线必经过定点可得答案; (3)先把直线转化为,得到直线无论k取何值,总过定点,再根据过矩形对角线的交点的直线把矩形的面积平分,即可画出直线.
解:(1)当时,直线的解析式为:,如图1.
当时,直线的解析式为.如图2,
(2),
无论取值(除外).
直线必经过点.
(3)直线
无论取何值.总过点
因为矩形是中心对称图形,对称中心为对角线的交点,过矩形对角线的交点的直线平分矩形的面积,所以找出对角线的交点,通过两点的直线平分矩形的面积.作出图形如图2.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+1与二次函数y2=ax2+bx﹣2交于A,B两点,且A(1,0)抛物线的对称轴是x=﹣ .
(1)求k和a、b的值;
(2)求不等式kx+1>ax2+bx﹣2的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商从市场得知如下信息:
A 品牌手表 | B 品牌手表 | |
进价(元/块) | 700 | 100 |
售价(元/块) | 900 | 160 |
他计划用 40000 元资金一次性购进这两种品牌手表共 100 块,设该经销商购进 A 品牌手表 x 块,这两种品牌手表全部销售完后获得利润为 y 元.
(1)试写出 y 与 x 之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于 12650 元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】班长调查了三班近 10 天的数学课堂小测验,在这 10 天,小测验的不及格人数为(单位:个)0,2,0, 3,1,1,0,2,5,1.在这 10 天中小测验不及格的人数( )
A. 中位数为 1.5 B. 方差为 1.5 C. 极差为 1.5 D. 标准差为 1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于________.(只需写出一个符合要求的数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.
(1)观察图,其中 , ;
(2)求第2趟电瓶车距乙地的路程与的函数关系式;
(3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=ABAC④OE=AD⑤S△APO=,正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.
(1)AD是⊙O的切线吗?为什么?
(2)若OD⊥AB,BC=5,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com