【题目】矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求证:四边形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面积.
【答案】(1)证明见解析;(2)20.
【解析】分析:(1)先证明四边形AFCE是平行四边形,再证明FA=FC,根据有一组邻边相等的平行四边形是菱形得出结论;
(2)设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面积即可.
详解:(1)∵四边形ABCD是矩形,
∴DC∥AB,DC=AB,
∵DE=BF,
∴EC=AF,
而EC∥AF,
∴四边形AFCE是平行四边形,
由DC∥AB可得∠ECA=∠FAC,
∵∠ECA=∠FCA,
∴∠FAC=∠FCA,
∴FA=FC,
∴平行四边形AFCE是菱形;
(2)解:设DE=x,则AE=EC=8-x,
在Rt△ADE中,由勾股定理得
42+x2=(8-x)2,
解得x=3,
∴菱形的边长EC=8-3=5,
∴菱形AFCE的面积为:4×5=20.
科目:初中数学 来源: 题型:
【题目】市、市和市分别有某种机器台、台、台,现在决定把这些机器支援给市台,市台.己知调运机器的费用如表所示.
市 | 市 | 市 | |
市 | 元/台 | 元/台 | 元/台 |
市 | 元/台 | 元/台 | 元/台 |
设从市、市各调台到市.
(1)市调运到市的机器为________台 (用含的式子表示);
(2)市调运到市的机器的费用为________元(用含的式子表示,并化简);
(3)求调运完毕后的总运费(用的式子表示,并化简);
(4)当和时,哪种调运方式总运费少?少多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上两点A、B对应的数分别为-1、3, 点P是数轴上一动点P
(1)(4分)若点P到点A,点B的距离相等,求点P对应的数;
(2) (6分)当点P以每分钟5个单位长度的速度从O点向右运动时,点A以每分钟3个单位长度的速度向右运动,点B以每分钟2个单位长度的速度向右运动,问几分钟时点P到点A,点B的距离相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍.
(1)该同学购买甲乙两种铅笔各多少支?
(2)求该同学购买这两种铅笔共花了多少元钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6cm,AC=8cm,BC=10cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】、两地相距千米,一列慢车从地开出,每小时行驶千米,一列快车从地开出,每小时行驶千米,两车同时开出.
若相向而行,出发后多少小时相遇?
若相背而行,多少小时后,两车相距千米
若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知△ABC中,AB=3,AC=4,BC=5,作∠ABC的角平分线交AC于D,以D为圆心,DA为半径作圆,与射线交于点E、F.有下列结论: ①△ABC是直角三角形;②⊙D与直线BC相切;③点E是线段BF的黄金分割点;④tan∠CDF=2.
其中正确的结论有( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.
(1).请用两种不同的方法表示图中阴影部分的面积.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn这三个代数式之间的一个等量关系为: .
(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab=4,试求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com