精英家教网 > 初中数学 > 题目详情

【题目】对非负实数x“四舍五入到个位的值记为<x>,即:当n为非负整数时,如果n﹣ ≤x<n+ ,则<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…

试解决下列问题:

(1)填空:①<π>=________;②如果<2x﹣1>=3,则实数x的取值范围为________;

(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;

(3)求满足<x>= x的所有非负实数x的值.

【答案】(1)3;≤x< ;(2)见解析;(3)3;≤x<

【解析】

(1)π的十分位为1,应该舍去,所以精确到个位是3;如果精确数是3,那么这个数应该在2.53.5之间,包括2.5,不包括3.5,让2.5≤2x-1<3.5,解不等式即可;(2)①分别表示出<x+m><x>,即可得到所求不等式;②举出反例说明即可,譬如稍微超过0.5的两个数相加;(3)x为整数设这个整数为k,易得这个整数应在k- k+ 之间包括k-不包括k+,求得整数k的值即可求得x的非负实数的值.

(1)3;≤x<

(2)解:①证明:设<x>=n,则n﹣≤x<n+,n为非负整数; (n+m)﹣≤x+m<(n+m)+ ,且n+m为非负整数,

<x+m>=n+m=m+<x>.

②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,

<0.6>+<0.7>≠<0.6+0.7>,

<x+y>=<x>+<y>不一定成立;

(3)解:∵x≥0, x为整数, x=k,k为整数,

x= k,

k>=k,

k﹣k<k+ ,k≥0,

0≤k≤2,

k=0,1,2,

x=0,

故答案为:3; ≤x<

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥ADQ.

(1)求证:△ADC≌△BEA;

(2)若PQ=4,PE=1,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).

(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);

(2)分别写出A′,B′,C′三点的坐标;

(3)请写出所有以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),的函数关系如图所示.

根据图象信息,解答下列问题:

(1)这辆汽车的往、返速度是否相同?请说明理由;

(2)求返程中之间的函数表达式;

(3)求这辆汽车从甲地出发4h时与甲地的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.

(1)画出将△ABC向右平移2个单位后得到的△A1B1C1 , 再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2
(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数y=﹣2x2+1,下列说法错误的是(
A.图象开口向下
B.图象的对称轴为x=
C.函数最大值为1
D.当x>1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示。(销售额=销售单价×销售量)

(1)直接写出y与x之间的函数解析式;

(2)分别求第10天和第15天的销售额;

(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售甲、乙两种商品,现有如下信息: 请结合以上信息,解答下列问题:

(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2x+2k﹣2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,求该方程的根.

查看答案和解析>>

同步练习册答案