【题目】对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣ ≤x<n+ ,则<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
试解决下列问题:
(1)填空:①<π>=________;②如果<2x﹣1>=3,则实数x的取值范围为________;
(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;
(3)求满足<x>= x的所有非负实数x的值.
【答案】(1)3;≤x< ;(2)见解析;(3)3;≤x<
【解析】
(1)π的十分位为1,应该舍去,所以精确到个位是3;如果精确数是3,那么这个数应该在2.5和3.5之间,包括2.5,不包括3.5,让2.5≤2x-1<3.5,解不等式即可;(2)①分别表示出<x+m>和<x>,即可得到所求不等式;②举出反例说明即可,譬如稍微超过0.5的两个数相加;(3)x为整数,设这个整数为k,易得这个整数应在k- 和k+ 之间,包括k- ,不包括k+,求得整数k的值即可求得x的非负实数的值.
(1)3;≤x<
(2)解:①证明:设<x>=n,则n﹣≤x<n+,n为非负整数; ∴(n+m)﹣≤x+m<(n+m)+ ,且n+m为非负整数,
∴<x+m>=n+m=m+<x>.
②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,
∴<0.6>+<0.7>≠<0.6+0.7>,
∴<x+y>=<x>+<y>不一定成立;
(3)解:∵x≥0, x为整数, 设 x=k,k为整数,
则x= k,
∴<k>=k,
∴k﹣≤k<k+ ,k≥0,
∵0≤k≤2,
∴k=0,1,2,
∴x=0,, .
故答案为:3; ≤x<.
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.
(1)求证:△ADC≌△BEA;
(2)若PQ=4,PE=1,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)分别写出A′,B′,C′三点的坐标;
(3)请写出所有以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),与的函数关系如图所示.
根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中与之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.
(1)画出将△ABC向右平移2个单位后得到的△A1B1C1 , 再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;
(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数y=﹣2x2+1,下列说法错误的是( )
A.图象开口向下
B.图象的对称轴为x=
C.函数最大值为1
D.当x>1时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示。(销售额=销售单价×销售量)
(1)直接写出y与x之间的函数解析式;
(2)分别求第10天和第15天的销售额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售甲、乙两种商品,现有如下信息: 请结合以上信息,解答下列问题:
(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com