精英家教网 > 初中数学 > 题目详情

【题目】某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示。(销售额=销售单价×销售量)

(1)直接写出y与x之间的函数解析式;

(2)分别求第10天和第15天的销售额;

(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?

【答案】解:(1

210天和第15天在第10天和第20天之间,

10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n

点(1010),(208)在z=mx+n的图象上,

,解得:

x=10时, y=2×10=20,销售金额为:10×20=200(元);

x=15时, y=2×15=30,销售金额为:9×30=270(元)。

故第10天和第15天的销售金额分别为200元,270元。

3)若日销售量不低于24千克,则y≥24

0≤x≤15时,y=2x

解不等式2x≥24,得x≥12

15x≤20时,y=﹣6x+120

解不等式﹣6x+120≥24,得x≤16

∴12≤x≤16

∴“最佳销售期共有:16﹣12+1=5(天)。

10≤x≤20)中0px的增大而减小。

12≤x≤16时,x12时,p有最大值,此时=9.6(元/千克)。

故此次销售过程中最佳销售期共有5天,在此期间销售单价最高为9.6

【解析】试题分析:(1)分两种情况进行讨论:①0≤x≤15②15x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解:

0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x

直线y=k1x过点(1530),∴15k1=30,解得k1=2

∴y=2x0≤x≤15);

15x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b

点(1530),(200)在y=k2x+b的图象上,

,解得:

∴y=﹣6x+12015x≤20)。

综上所述,可知yx之间的函数关系式为:

2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(1010),(208)在p=mx+n的图象上,利用待定系数法求得px的函数解析式,继而求得10天与第15天的销售金额。

3)日销售量不低于24千克,即y≥24.先解不等式2x≥24,得x≥12,再解不等式﹣6x+120≥24,得x≤16,则求出最佳销售期共有5天;然后根据10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.

(1)分别求线段BC、DE所在直线对应的函数关系式.

(2)当甲队清理完路面时,求乙队铺设完的路面长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列要求,解答相关问题.
请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对非负实数x“四舍五入到个位的值记为<x>,即:当n为非负整数时,如果n﹣ ≤x<n+ ,则<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…

试解决下列问题:

(1)填空:①<π>=________;②如果<2x﹣1>=3,则实数x的取值范围为________;

(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;

(3)求满足<x>= x的所有非负实数x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC中,∠BAC=78°,AB=AC,P为△ABC内一点,连BP,CP,使∠PBC=9°,∠PCB=30°,连PA,则∠BAP的度数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题.
(1)写出方程ax2+bx+c=0的根;
(2)写出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k无实数根,写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABE△ADC△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为__度.

查看答案和解析>>

同步练习册答案