精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,ACE,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AGCD于点H,若∠C=120°,则∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

【答案】C

【解析】

利用基本作图可判断AH为∠CAB的平分线,即∠BAH=CAH,再根据平行线的性质得到∠C+BAC=180°,AHC=BAH,计算出∠CAB的度数,后得到∠BAH的度数,即可得出答案

解:由基本作图可得AH为∠CAB的平分线,即∠BAH=CAH,

ABCD,,

∴∠C+BAC=180°,AHC=BAH,

∴∠BAC=180°-C=180°-120°=60°,

∴∠BAH=BAC=30°,

∴∠AHC=30°,

∴∠AHD=180°-30°=150°.

故答案为:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在A、B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是(  )

A. 6千米 B. 8千米 C. 10千米 D. 14千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,以A为圆心,任意长为半径画弧,分别交ACAB于点MN,再分别以MN为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE3BE5,则AC的长为(  )

A.8B.7C.6D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,点EBC的延长线上,CE=CA,求∠DAE的度数;

(2)如果把(1)中的“AB=AC”条件去掉,其余条件不变,那么∠DAE的度数改变吗?为什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余条件不变,试探究∠DAE∠BAC的数量关系式,试证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,EBC的中点,AB交⊙OD点.

(1)直接写出EDEC的数量关系:_________;

(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;

(3)填空:当BC=_______时,四边形AOED是平行四边形,同时以点O、D、E、C为顶点的四边形是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.

(1)分别求出这两个函数的表达式;

(2)直接写出不等式k1x+b的解集;

(3)M为线段PQ上一点,且MNx轴于N,求△MON的面积最大值及对应的M点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,线段AB和射线BM交于点B

1)利用尺规完成以下作图,并保留作图痕迹(不写作法)

①在射线BM上作一点C,使AC=AB

②作∠ABM 的角平分线交ACD点;

③在射线CM上作一点E,使CE=CD,连接DE.

2)在(1)所作的图形中,猜想线段BDDE的数量关系,并证明之.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC和∠ABC的平分线相交于点O,过点OEFABBCF,交ACE,过点OODBCD,下列四个结论:

①∠AOB90°+C

AE+BFEF

③当∠C90°时,EF分别是ACBC的中点;

④若ODaCE+CF2b,则SCEFab

其中正确的是(  )

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

同步练习册答案