精英家教网 > 初中数学 > 题目详情

【题目】(1)如图,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,点EBC的延长线上,CE=CA,求∠DAE的度数;

(2)如果把(1)中的“AB=AC”条件去掉,其余条件不变,那么∠DAE的度数改变吗?为什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余条件不变,试探究∠DAE∠BAC的数量关系式,试证明.

【答案】(1)450;(2)不改变;(3)∠DAE=∠BAC.

【解析】

(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=ACB=45°,又因为BD=BA,可求∠BAD=BDA=67.5°,再由CE=CA,可求∠CAE=E=22.5°,所以∠DAE=BAE-BAD=112.5°-67.5°=45°;
(2)先设∠CAE=x,由已知CA=CE可求∠ACB=CAE+E=2x,B=90°-2x,又因为BD=BA,所以∠BAD=BDA=x+45°,再根据三角形的内角和是180°,可求∠BAE=90°+x,即∠DAE=BAE-BAD=(90°+x)-(x+45°)=45度;
(3)可设∠CAE=x,BAD=y,则∠B=180°-2y,E=CAE=x,所以∠BAE=180°-B-E=2y-x,BAC=BAE-CAE=2y-x-x=2y-2x,即∠DAE=BAC.

(1)AB=AC,BAC=

∴∠B=ACB=

BD=BA,

∴∠BAD=BDA=(180B)=

CE=CA,

∴∠CAE=E=ACB=

ABE,BAE=180BE=

∴∠DAE=BAEBAD==

(2)不改变.

设∠CAE=x,

CA=CE,

∴∠E=CAE=x,

∴∠ACB=CAE+E=2x,

ABC,BAC=

∴∠B=ACB=2x,

BD=BA,

∴∠BAD=BDA= (180B)=x+

ABE,BAE=BE,=(2x)x=+x,

∴∠DAE=BAEBAD,=(+x)(x+)=

(3)DAE=BAC.

理由:设∠CAE=x,BAD=y,

则∠B=2y,E=CAE=x,

∴∠BAE=BE=2yx,

∴∠DAE=BAEBAD=2yxy=yx,

BAC=BAECAE=2yxx=2y2x,

∴∠DAE=BAC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘渔船正自西向东航行追赶鱼群,在A处望见岛C在船的北偏东60°方向,前进20海里到达B处,此时望见岛C在船的北偏东30°方向,以岛C为中心的12海里内为军事演习的危险区.请通过计算说明:如果这艘渔船继续向东追赶鱼群是否有进入危险区的可能.(参考数据:≈1.4,≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行全体学生汉字听写比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.

组别

正确字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根据以上信息完成下列问题:

(1)统计表中的m=   ,n=   ,并补全条形统计图;

(2)扇形统计图中“C所对应的圆心角的度数是   

(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰与等腰,连接相交于点,交于点,交与点.下列结论:①;②;③平分;④若,则.其中一定正确的结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某海尔专卖店春节期间,销售10型号洗衣机和20型号洗衣机的利润为4000元,销售20型号洗衣机和10型号洗衣机的利润为3500元.

(1)求每台型号洗衣机和型号洗衣机的销售利润;

(2)该商店计划一次购进两种型号的洗衣机共100台,其中型号洗衣机的进货量不超过型号洗衣机的进货量的2倍,问当购进型号洗衣机多少台时,销售这100台洗衣机的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,ACE,F两点,再分别以E,F为圆心,以大于EF长为半径作圆弧,两条弧交于点G,作射线AGCD于点H,若∠C=120°,则∠AHD=(  )

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地开往B地,甲车比乙车早出发2小时,并且在途中休息了0.5小时,休息前后速度相同,如图是甲、乙两车行驶的距离ykm)与时间xh)的函数图象.解答下列问题:

1)图中a的值为;

2)当x1.5h)时,求甲车行驶路程ykm)与时间xh)的函数关系式;

3)当甲车行驶多长时间后,两车恰好相距40km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,∠ABC和∠ACB的平分线相交于点G,过点GEF BCABE,交ACF,过点GGD ACD,下列四个结论:①EF = BE+CF;②∠BGC= 90 °+A;③点G ABC各边的距离相等;④设GD =mAE + AF =n,则SAEF=mn.其中正确的结论有(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

同步练习册答案