【题目】如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
【答案】(1)见解析;(2)见解析;(3)6
【解析】
(1)根据平行线的性质得出,根据全等三角形的判定得出,根据全等三角形的性质得出即可;
(2)根据平行四边形的判定推出即可;
(3)求出高和,再根据面积公式求出即可.
解:(1)证明:∵点E是BD的中点,
∴BE=DE,
∵AD∥BC,
∴∠ADE=∠CBE,
在△ADE和△CBE中
∴△ADE≌△CBE(ASA),
∴AE=CE;
(2)证明:∵AE=CE,BE=DE,
∴四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DF=CD,
∴DF=AB,
即DF=AB,DF∥AB,
∴四边形ABDF是平行四边形;
(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,
∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,
∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,
∴∠BDC=∠F=30°,
∴DQ=DF==1,CH=DC==1,
∴四边形ABCF的面积S=S平行四边形BDFA+S△BDC=AF×DQ+=4×1+=6,
故答案为:6.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于反比例函数y=﹣,下列说法错误的是( )
A.图象经过点(1,﹣3)
B.图象分布在第一、三象限
C.图象关于原点对称
D.图象与坐标轴没有交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:
(1)求y与x之间的函数解析式;
(2)求这一天销售羊肚菌获得的利润W的最大值;
(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线上有一点, ,,点从点出发以每秒3个单位长度的速度沿射线运动,过点作交射线于点,在射线上取点,使得,连结.设点的运动时间是 (秒)().
(1)当点在点右侧时,求、的长. (用含的代数式表示)
(2)连结,设的面积为平方单位,求与之间的丽数关系式.
(3)当是轴对称图形时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为,且满足,求实数m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是对角线上一动点,将线段绕点顺时针旋转到,连接.
(1)如图1,求证:;
(2)如图2,连接并延长,分别交、于点、.
①求证:;②若的最小值为,直接写出菱形的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.
请根据图中信息,解决下列问题:
(1)两个班共有女生多少人?
(2)将频数分布直方图补充完整;
(3)求扇形统计图中部分所对应的扇形圆心角度数;
(4)身高在的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com