精英家教网 > 初中数学 > 题目详情

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】

(1)如图1,当tan∠PAB=1,c=4 时,a= , b=
如图2,当∠PAB=30°,c=2时,a= , b=
(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)【拓展证明】如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

【答案】
(1)4 ;4
(2)

结论a2+b2=5c2

证明:如图3中,

连接EF.

∵AF、BE是中线,

∴EF∥AB,EF= AB,

∴△FPE∽△APB,

= =

设FP=x,EP=y,则AP=2x,BP=2y,

∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2

b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2

c2=AB2=AP2+BP2=4x2+4y2

∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2


(3)

解:如图4中,

在△AGE和△FGB中,

∴△AGE≌△FGB,

∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,

同理可证△APH≌△BFH,

∴AP=BF,PE=CF=2BF,

即PE∥CF,PE=CF,

∴四边形CEPF是平行四边形,

∴FP∥CE,

∵BE⊥CE,

∴FP⊥BE,即FH⊥BG,

∴△ABF是中垂三角形,

由(2)可知AB2+AF2=5BF2

∵AB=3,BF= AD=

∴9+AF2=5×( 2

∴AF=4.


【解析】(1)解:如图1中,

∵CE=AE,CF=BF,
∴EF∥AB,EF= AB=2
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF= =2
∴b=AC=2AE=4 ,a=BC=4
故答案为4 ,4
如图2中,

连接EF,
, ∵CE=AE,CF=BF,
∴EF∥AB,EF= AB=1,
∵∠PAB=30°,
∴PB=1,PA=
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE= ,PF=
∴AE= = ,BF= =
∴a=BC=2BF= ,b=AC=2AE=
故答案分别为
(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.
②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2 . 设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.本题考查四边形综合题、三角形中位线定理、平行四边形的判定和性质、勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线构造全等三角形,学会利用新的结论解决问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:
(1)∠P=∠BAC
(2)直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是(

A.CD⊥l
B.点A,B关于直线CD对称
C.点C,D关于直线l对称
D.CD平分∠ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.

(1)AE的长等于
(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,其面积标记为S1 , 以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 , …,按照此规律继续下去,则S9的值为(

A.( 6
B.( 7
C.( 6
D.( 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一列按一定顺序和规律排列的数:
第一个数是
第二个数是
第三个数是

对任何正整数n,第n个数与第(n+1)个数的和等于
(1)经过探究,我们发现:
设这列数的第5个数为a,那么 ,哪个正确?
请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于 ”;
(3)设M表示 ,…, ,这2016个数的和,即
求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,直线AB∥CD,点P在两平行线之间,写出∠BAP、∠APC、∠DCP满足的数量关系

(2)如图2,直线ABCD相交于点E,点P∠AEC内一点,AQ平分∠EAP,CQ平分∠ECP,若∠AEC=40°,∠AQC=70°,求∠APC的度数.

(3)如图3,连接AD、CB交于点P,AQ平分∠BAD,CQ平分∠BCD,探究∠ABC、∠AQC、∠ADC满足的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.

查看答案和解析>>

同步练习册答案