精英家教网 > 初中数学 > 题目详情

【题目】如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数 (k为不等于0的常数)的图象在第一象限交于点A(1,n).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.

【答案】
(1)解:把点B(﹣1,0)代入一次函数y=x+b得:

0=﹣1+b,

∴b=1,

∴一次函数解析式为:y=x+1,

∵点A(1,n)在一次函数y=x+b的图象上,

∴n=1+1,

∴n=2,

∴点A的坐标是(1,2).

∵反比例函数 的图象过点A(1,2).

∴k=1×2=2,

∴反比例函数关系式是:y=


(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,

而当x=1时,y=2,当x=6时,y=

∴当1≤x≤6时,反比例函数y的值: ≤y≤2


【解析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为平行四边形,AEBDECFBDF

(1)求证:BEDF

(2)若MN分别为边ADBC上的点,且DM=BN,试猜想四边形MENF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知梯形ABCD中,ADBCABAD(如图所示).

(1)在下图中,用尺规作∠BAD的平分线AEBC于点E,连接DE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;

(2)若∠ABC=60°,EC=2BE.求证:EDDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,ABAC,AB=2,AC=4.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.

(1)当α=   °,四边形ABEF是平行四边形;

(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形.

①α=   °,构造的四边形是菱形;

若构造的四边形是矩形,求出该矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 在平面直角坐标系 xOy 中的位置如图所示.

1)作△ABC 关于点 O 成中心对称的△A1B1C1

2)作出将△A1B1C1向右平移 3 个单位,再向上平移4 个单位后的△A2B2C2

3)请直接写出点 B2 关于 x 轴对称的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,
(1)求证:BE是⊙O的直径且OP⊥AB;
(2)若AB=BC=8,AE=6,试判断直线DC与⊙O的位置关系,并说明理由;
(3)如图2,若AB=10,BC=8,⊙O与DC边相交于H,I两点,连结BH,当∠ABE=∠CBH时,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月,我市某中学举行了“爱我中国朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:
(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;
(2)扇形统计图中,m= , n=;C等级对应扇形有圆心角为度;
(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.

(1)求该二次函数的关系式;
(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点C,D在线段AB上,M、N分别是AC、BD的中点,若AB=20,CD=4,

(1)求MN的长.

(2)若AB=a,CD=b,请用含有a、b的代数式表示出MN的长.

查看答案和解析>>

同步练习册答案