精英家教网 > 初中数学 > 题目详情

【题目】ABC 在平面直角坐标系 xOy 中的位置如图所示.

1)作△ABC 关于点 O 成中心对称的△A1B1C1

2)作出将△A1B1C1向右平移 3 个单位,再向上平移4 个单位后的△A2B2C2

3)请直接写出点 B2 关于 x 轴对称的点的坐标.

【答案】作图见解析.

【解析】1)分别作出点ABC关于原点的对称点顺次连接即可得出图象

2)根据△A1B1C1将向右平移 3 个单位,再向上平移4 个单位后得出△A2B2C2

3直接写出答案即可

1)如图所示,△A1B1C1 即为所求.

2)如图所示,△A2B2C2即为所求.

3)点 B2 关于 x 轴对称的点的坐标为(4,﹣3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么ABP的面积与点P运动的路程之间的函数图象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)如图,在ABC中,ABBC=4,AOBOP是射线CO上的一个动点,∠AOC=60°,则当PAB为直角三角形时,AP的长为________________(提示:直角三角形斜边上的中线等于斜边的一半).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣ +|﹣ |×sin45°+(π﹣1)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200(不含200元)元而不足500元,所有商品按购物价优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,A,B两个商品价格分别为180元,550元。

(1) 某人第一次购买一件A商品,第二次购买一件B商品,实际共付款多少元?

(2) 若此人一次购物购买A,B商品各一件,则实际付款多少钱?

(3) 国庆期间,某人在该商场两次购物分别付款180元和550元,如果他合起来一次性购买同样的商品,还可节约多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数 (k为不等于0的常数)的图象在第一象限交于点A(1,n).求:
(1)一次函数和反比例函数的解析式;
(2)当1≤x≤6时,反比例函数y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面给出的五个结论中:

①最大的负整数是-1;②数轴上表示数3-3的点到原点的距离相等;

③当a≤0时,|a|=-a成立;④若a2=9,则a一定等于3;

一定是正数.说法正确的有_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,﹣8),对称轴为x=4.

(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点N以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PN被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点N的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPN为等腰三角形?若存在,请直接写出所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案