精英家教网 > 初中数学 > 题目详情

【题目】如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.

(1)直接写出D点和E点的坐标;

(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6?

(3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】(1)D(2,9),E(2,3);(2);(3)(1,1)或(3,3)或(2,2).

【解析】

试题分析:(1)抛物线配方,即可得到顶点为D的坐标然后设点E的坐标是(2,m),点C′的坐标是(0,n),根据CEC′是等腰直角三角形,求出E点的坐标

(2)令抛物线的y=0可求得A、B的坐标,然后再根据=5:6,得到:,然后再证明HGM∽△ABN,,从而可证得,所以HG=5,设点H(m,﹣m2+4m+5),G(m,m+1),最后根据HG=5,列出关于m的方程求解即可;

(3)分别根据P、Q、T为直角画出图形,然后利用等腰直角三角形的性质和一次函数的图象的性质求得点Q的坐标即可.

试题解析:(1)抛物线=D点的坐标是(2,9)E为对称轴上的一点,点E的横坐标是2,设点E的坐标是(2,m),点C′的坐标是(0,n),将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上,∴△CEC′是等腰直角三角形,解得(舍去),点E的坐标是(2,3),点C′的坐标是(0,1).

综上,可得D点的坐标是(2,9),点E的坐标是(2,3).

(2)如图1所示:

令抛物线的y=0得:,解得:,所以点A(﹣1,0),B(5,0).设直线C′E的解析式是,将E(2,3),C′(0,1),代入得,解得:直线C′E的解析式为,联立得:,解得:点F得坐标为(4,5),点A(﹣1,0)在直线C′E上.直线C′E的解析式为∴∠FAB=45°.过点B、H分别作BNAF、HMAF,垂足分别为N、M.∴∠HMN=90°,ADN=90°∵∠NAD=HNM=45°∴△HGM∽△ABN=5:6,,即HG=5.设点H的横坐标为m,则点H的纵坐标为,则点G的坐标为(m,m+1),.解得:

(3)由平移的规律可知:平移后抛物线的解析式为=.将x=5代入得:y=5,点T的坐标为(5,5).设直线OT的解析式为,将x=5,y=5代入得;k=1,直线OT的解析式为

①如图2所示:当PTx轴时,PTQ为等腰直角三角形,

将y=5代入抛物线得:,解得:点P的坐标为(1,5).将x=1代入得:y=1,点Q的坐标为(1,1)

②如图3所示:

由①可知:点P的坐标为(1,5).∵△PTQ为等腰直角三角形,点Q的横坐标为3,将x=3代入得;y=3,点Q得坐标为(3,3)

③如图4所示:

设直线PT解析式为直线PTQT,k=﹣1将k=﹣1,x=5,y=5代入得:b=10,直线PT的解析式为.联立得:,解得:点P的横坐标为2将x=2代入得,y=2,点Q的坐标为(2,2).

综上所述:点Q的坐标为(1,1)或(3,3)或(2,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.

(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上离开原点4个长度单位的点表示的数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.
(1)如图1,求证:BD=CE;
(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;
(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图,请你根据图中所给的信息解答下列问题:
(1)请将下面条形统计图补充完整;
(2)“一般”等级所在扇形的圆心角的度数是度;
(3)若“一般”和“优秀”均被视为达标成绩,该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.

(1)求抛物线与x轴的交点坐标;

(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由;

(3)问几秒钟时,BD、E在同一条直线上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线l1;y=ax2+bx+c(a0)经过原点,与x轴的另一个交点为B(4,0),点A为顶点,且直线OA的解析式为y=x.

(1)如图1,求抛物线l1的解析式;

(2)如图2,将抛物线l1绕原点O旋转180°,得到抛物线l2,l2与x轴交于点B′,顶点为A′,点P为抛物线l1上一动点,连接PO交l2于点Q,连接PA、PA′、QA′、QA.

请求:平行四边形PAQA′的面积S与P点横坐标x(2x4)之间的关系式;

(3)在(2)的条件下,如图11﹣3,连接BA′,抛物线l1或l2上是否存在一点H,使得HB=HA′?若存在,请求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,牧童在A处放牛,其家在C处,A、C到河岸L的距离分别为AB=2km,CD=4km且,BD=8km.

(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),
不必说明理由.
(2)求出(1)中的最短路程.

查看答案和解析>>

同步练习册答案