【题目】电子政务、数字经济、智慧社会一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表
组别 | 成绩x(分) | 人数 |
A | 60≤x<70 | 10 |
B | 70≤x<80 | m |
C | 80≤x<90 | 16 |
D | 90≤x≤100 | 4 |
请观察上面的图表,解答下列问题:
(1)统计表中m= ;统计图中n= ,D组的圆心角是 度.
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
①恰好1名男生和1名女生被抽取参加5G体验活动的概率;
②至少1名女生被抽取参加5G体验活动的概率.
【答案】(1)20、32、28.8;(2)①恰好1名男生和1名女生被抽取参加5G体验活动的概率为;②至少1名女生被抽取参加5G体验活动的概率为.
【解析】
(1)先根据A组人数及其所占百分比求出总人数,由各组人数之和等于总人数求出B组人数m的值,用360°乘以D组人数所占比例可得;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
(1)被调查的总人数为10÷20%=50,
则m=50﹣(10+16+4)=20,
n%100%=32%,即n=32,
D组的圆心角是360°28.8°,
故答案为:20、32、28.8;
(2)①设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:
A | B | 1 | 2 | |
A | / | (B,A) | (1,A) | (2,A) |
B | (A,B) | / | (1,B) | (2,B) |
1 | (A,1) | (B,1) | / | (2,1) |
2 | (A,2) | (B,2) | (1,2) | / |
共有 12 种可能的结果,且每种的可能性相同,其中刚好抽到一男一女的结果有8种,
∴恰好1名男生和1名女生被抽取参加5G体验活动的概率为;
②∵至少1名女生被抽取参加5G体验活动的有10种结果,
∴至少1名女生被抽取参加5G体验活动的概率为.
科目:初中数学 来源: 题型:
【题目】如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,
教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
(1)求教学楼AB的高度;
(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
(参考数据:sin22≈,cos22≈,tan22≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育老师要从每班选取一名同学,参加学校的跳绳比赛.小静和小炳是跳绳能手,下面分别是小静、小炳各6次跳绳成绩统计图和成绩分析表
小静、小炳各6次跳绳成绩分析表
成绩 姓名 | 平均数 | 中位数 | 方差 |
小静 | 180 | 182.5 | 79.7 |
小炳 | 180 | a | 33 |
(1)根据统计图的数据,计算成绩分析表中a= ;
(2)结合以上信息,请你从两个不同角度评价这两位学生的跳绳水平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点.
(1)如图1,若二次函数图象也经过点,试求出该二次函数解析式,并求出的值.
(2)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校数学兴趣小组利用机器人开展数学活动.在相距个单位长度的直线跑道上,机器人甲从端点出发,匀速往返于端点、之间,机器人乙同时从端点出发,以大于甲的速度匀速往返于端点、之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.
(观察)
①观察图,若这两个机器人第一次迎面相遇时,相遇地点与点之间的距离为个单位长度,则他们第二次迎面相遇时,相遇地点与点之间的距离为 _____个单位长度;
②若这两个机器人第一次迎面相遇时,相遇地点与点之间的距离为个单位长度,则他们第二次迎面相遇时,相遇地点与点之间的距离为 _____个单位长度;
(发现)
设这两个机器人第一次迎面相遇时,相遇地点与点之间的距离为个单位长度,他们第二次迎面相遇时,相遇地点与点之间的距离为个单位长度.兴趣小组成员发现了与的函数关系,并画出了部分函数图象(线段,不包括点,如图所示).
①= _____;
②分别求出各部分图象对应的函数表达式,并在图中补全函数图象;
(拓展)
设这两个机器人第一次迎面相遇时,相遇地点与点之间的距离为个单位长度,他们第三次迎面相遇时,相遇地点与点之间的距离为个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点之间的距离不超过个单位长度,则他们第一次迎面相遇时,相遇地点与点之间的距离的取值范围是 _____.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是正方形的边的中点,点与关于对称,的延长线与交于点,与的延长线交于点,点在的延长线上,作正方形,连接,记正方形,的面积分别为,,则下列结论错误的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BC是直径,⊙O的切线PA交CB的延长线于点P,OE∥AC交AB于点F,交PA于点E,连接BE.
(1)判断BE与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,BE=3,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com