精英家教网 > 初中数学 > 题目详情

【题目】11·永州)(本题满分10分)如图,已知二次函数的图象经过

A),B0,7)两点.

求该抛物线的解析式及对称轴;

为何值时,

轴上方作平行于轴的直线,与抛物线交于CD两点(点C在对称轴的左侧),

过点CD轴的垂线,垂足分别为FE.当矩形CDEF正方形时,求C点的坐标.

【答案】解:A),B0,7)两点的坐标代入,得

解得

所以,该抛物线的解析式为

又因为,所以对称轴为直线

当函数值时,的解为

结合图象,容易知道时,

当矩形CDEF为正方形时,设C点的坐标为(mn),

,即

因为CD两点的纵坐标相等,所以CD两点关于对称轴对称,设点D的横坐标为,则,所以,所以CD=

因为CD=CF,所以,整理,得,解得5

因为点C在对称轴的左侧,所以只能取

时,==4

于是,得点C的坐标为(4).

【解析】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线lyx+1y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4……,点A1A2A3A4……在直线l上,点C1C2C3C4……x轴正半轴上,则前n个正方形对角线长的和是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,△ABC的三个顶点坐标分别为A21),B14),C32).请解答下列问题:

1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;

2)以原点O为位似中心,位似比为12,在y轴的右侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点的坐标;

3)如果点Dab)在线段BC上,请直接写出经过(2)的变化后对应点D2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国魏晋时期的数学家刘徽(263年左右)首创割圆术,所谓割圆术就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率.刘微从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,,割得越细,正多边形就越接近圆.设圆的半径为,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率__________.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了解旅游人数的变化情况,收集并整理了20171月至201912月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:

根据统计图提供的信息,下列推断不合理的是(

A.2017年至2019年,各年的月接待旅游量高峰期大致在78月份

B.2019年的月接待旅游量的平均值超过300万人次

C.2017年至2019年,年接待旅游量逐年增加

D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,解决问题:

如图,为了求平面直角坐标系中任意两点Ax1y1)、Bx2y2)之间的距离,可以AB为斜边作RtABC,则点C的坐标为Cx2y1),于是AC|x1x2|BC|y1y2|,根据勾股定理可得AB,反之,可以将代数式的值看做平面内点(x1y1)到点(x2y2)的距离.

例如∵= =,可将代数式看作平面内点(xy)到点(﹣13)的距离

根据以上材料解决下列问题

1)求平面内点M2,﹣3)与点N(﹣13)之间的距离;

2)求代数式的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教育行政部门规定初中生每天户外活动的平均时间不少于1小时,为了解学生户外活动的情况,随机地对部分学生进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请根据图中提供的信息解答下列问题:

1)在这次调查中共调查的学生人数为  ;活动时间为1小时所占的比例是 

2)补全条形统计图;

3)若该市共有初中生约14000名,试估计该市符合教育行政部门规定的活动时间的学生数;

4)如果从中任意抽取1名学生,活动时间为2小时的概率是多少?

查看答案和解析>>

同步练习册答案