精英家教网 > 初中数学 > 题目详情
5.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF,下面四个结论:①$\frac{FG}{FB}$=$\frac{1}{2}$;②点F是GE的中点;③AF=$\frac{\sqrt{2}}{3}$AB;④S△ABC=6S△BDF.其中正确结论的序号是①③④.

分析 首先根据题意易证得△ABG≌△BCD(ASA),则AG=BD,AG=$\frac{1}{2}$AB,根据相似三角形的对应边成比例与BA=BC,继而证得$\frac{AG}{AB}$=$\frac{FG}{FB}$=$\frac{1}{2}$;正确;继而可得FG=$\frac{1}{2}$BF;即可得AF=$\frac{1}{3}$AC,又由等腰直角三角形的性质,可得AC=$\frac{\sqrt{2}}{3}$AB,即可求得AF=$\frac{\sqrt{2}}{3}$AB;则可得S△ABC=6S△BDF

解答 解:∵∠ABC=90°,BG⊥CD,
∴∠DBE+∠BDE=∠BDE+∠BCD=90°,
∴∠DBE=∠BCD,
在△ABG和△BCD中$\left\{\begin{array}{l}{∠GAB=∠CBD}\\{AB=BC}\\{∠ABG=∠BCD}\end{array}\right.$,
∴△ABG≌△BCD(ASA),
则AG=BD,
∵在Rt△ABC中,∠ABC=90°,
∴AB⊥BC,AG⊥AB,
∴AG∥BC,
∴△AFG∽△CFB,
∴$\frac{AG}{CB}$=$\frac{FG}{FB}$=$\frac{1}{2}$,
故①正确;
∵AB=CB,点D是AB的中点,
∴BD=$\frac{1}{2}$AB=$\frac{1}{2}$CB,
∵tan∠BCD=$\frac{BD}{BC}$=$\frac{1}{2}$,
∴在Rt△ABG中,tan∠DBE=$\frac{AG}{AB}$=$\frac{1}{2}$,
∵$\frac{AG}{AB}$=$\frac{1}{2}$,
∴FG=$\frac{1}{2}$FB,
∵GE≠BF,
∴点F不是GE的中点.
故②错误;
∵△AFG∽△CFB,
∴AF:CF=AG:BC=1:2,
∴AF=$\frac{1}{3}$AC,
∵AC=$\sqrt{2}$AB,
∴AF=$\frac{\sqrt{2}}{3}$AB,
故③正确;
∵BD=$\frac{1}{2}$AB,AF=$\frac{1}{3}$AC,
∴S△ABC=6S△BDF
故④正确.
故答案为:①③④.

点评 此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB的大小为(  )
A.40°B.30°C.45°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在Rr△ABC中,∠C=90°,AC=BC=1,点O为AB的中点,点D、E分别为AC、AB边上的动点,且保持DO⊥EO,连接CO、DE交于点P.
(1)求证:OD=OE;
(2)在运动的过程中,DP•EP是否存在最大值?若存在,请求出DP•EP的最大值;若不存在,请说明理由.
(3)若CD=2CE,求DP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.
(1)求证:BE是⊙O的切线;
(2)若CD=1,cos∠AEB=$\frac{3}{5}$,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读与思考
婆罗摩笈多(Brahmagupta),是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数概念及加减法运算仅晚于中国《九章算术》,而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明过程如下:
已知:如图1,四边形ABCD内接于⊙O,对角线AC⊥BD于点P,PM⊥AB于点M,延长MP交CD于点N,求证:CN=DN.
证明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)请你阅读婆罗摩笈多定理的证明过程,完成剩余的证明部分.
(2)已知:如图2,△ABC内接于⊙O,∠B=30°,∠ACB=45°,AB=2,点D在⊙O上,∠BCD=60°,连接AD,与BC交于点P,作PM⊥AB于点M,延长MP交CD于点N,则PN的长为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.
(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;
(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC是黄金线(要求:保留作图痕迹);
(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若|a-b+1|与$\sqrt{a+2b+4}$互为相反数,则(a+b)2的值是9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示,菱形ABCD的对角线AC,BD交于点O,AB=8,∠DAB=60°,过点O作OE∥BC交CD于点E,连接AE交BD于点O1,过点O1作O1E1∥BC交CD于点E1…依此规律进行下去,则S${\;}_{△A{O}_{n}{E}_{n}}$=S${\;}_{△D{O}_{n}{E}_{n}}$(填入″>″、″=″或″<″),△AOnEn的面积是($\frac{4}{9}$)n•4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若a=2,b=-6,c=-3,求式子$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$的值.

查看答案和解析>>

同步练习册答案