精英家教网 > 初中数学 > 题目详情

【题目】为了迎接疫情彻底结束后的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表

运动鞋价格

进价(/)

售价(/)

已知元购进甲种运动鞋的数量与用元购进乙种运动鞋的数量相同.

的值;

要使购进的甲、乙两种运动鞋共双的总利润(利润售价进价)不少于元,且甲种运动鞋的数量不超过双,问该专卖店共有几种进货方案;

的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?

【答案】(1);(2)共有种方案;(3)此时应购进甲种运动鞋双,购进乙种运动鞋

【解析】

1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;
2)设购进甲种运动鞋x双,表示出乙种运动鞋(200-x)双,然后根据总利润列出一元一次不等式组,求出不等式组的解集后,再根据鞋的双数是正整数解答;
3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.

:依题意得,

整理得,

解得

经检验,是原分式方程的解,

所以,

设购进甲种运动鞋双,则乙种运动鞋双,

根据题意得,

解得

是正整数,

共有种方案;

设总利润为

时,的增大而减小,

所以,当时,有最大值,

即此时应购进甲种运动鞋双,购进乙种运动鞋双.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点C是⊙O的直径AB延长线上一点,过⊙O上一点DDFABF,交⊙O于点E,点MBE的中点,AB4,∠E=∠C30°

1)求证:CD是⊙O的切线;

2)求DM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.

【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.

试题解析:由题意得:(1)50+x-40=x+10(元),

(2)设每个定价增加x,

列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70,应进货200,

(3)设每个定价增加x,获得利润为y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,x=15,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250.

型】解答
束】
24

【题目】猜想与证明:

如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若MAF的中点,连接DM、ME,试猜想DMME的关系,并证明你的结论.

拓展与延伸:

(1)若将猜想与证明中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DMME的关系为   

(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前,某校九年级同学对“新冠疫情下停课不停学”线上学习的家长进行问卷调查,随机调查了若干名家长对线上学习的态度(态度分为:A.无所谓;B.基本赞成;C.反对;D.赞成).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:

1)此次抽样调查中,共调查了多少名中学生家长;

2)求出图2中扇形C所对的圆心角度数,并将图1补充完整;

3)在此次调查活动中,初三(1)班有A1A2两位家长对线上学习,持基本赞成的态度,初三(2)班有B1B2两位学生家长对线上学习,也持基本赞成的态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,,点在边上,连接沿折叠,若点的对称点的距离为,则的长为______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬泰山文化,某校举办了泰山诗文大赛活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):

组别

分数

人数

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

请根据以上信息,解答下列问题:

1)求出ab的值;

2)计算扇形统计图中5所在扇形圆心角的度数;

3)若该校共有1800名学生,那么成绩高于80分的共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,EBC的中点,FCD上一点,AEEF,下列结论:BAE30°;ABE∽△AEFCD3CFSABE4SECF.其中正确的有_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形内接于,点上两点,且,若,则图中阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从DE两处测得路灯B的仰角分别为αβ,且tanα=6,tanβ=求灯杆AB的长度.

查看答案和解析>>

同步练习册答案