分析 (1)连接OD,则∠AOD为直角,由四边形ABCD是平行四边形,则AB∥DC.从而得出∠CDO=90°,即可证出答案.
(2)作EF⊥AB于F,连接BE,根据圆周角定理得∠AEB=90°,然后根据勾股定理求得BE,然后根据sin∠BAE=$\frac{BE}{AB}$=$\frac{EF}{AE}$求得EF即可.
解答
解:(1)CD与圆O相切.
证明:如图①,连接OD,则∠AOD=2∠DAB=2×45°=90°,
∵四边形ABCD是平行四边形,
∴AB∥DC.
∴∠CDO=∠AOD=90°.
∴OD⊥CD.
∴CD与圆O相切.![]()
(2)如图②,作EF⊥AB于F,连接BE,
∵AB是圆O的直径,
∴∠AEB=90°,AB=2×3=6.
∵AE=5,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\sqrt{11}$,
∵sin∠BAE=$\frac{BE}{AB}$=$\frac{EF}{AE}$.
∴$\frac{\sqrt{11}}{6}$=$\frac{EF}{5}$
∴EF=$\frac{5\sqrt{11}}{6}$.
点评 本题考查了切线的判定和性质、平行四边形的性质以及圆周角定理,注意辅助线的作法是解此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (4,3) | B. | (2,3) | C. | (1,4) | D. | (2,4) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com