精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】解:(1)由y=x+1可得A(0,1),即OA=1,
∵tan∠AHO==
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在y=上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数y=的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N1 , 连接MN1 , 交y轴于P(如图),
此时PM+PN最小,
∵N与N1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(﹣1,6),
设直线MN1的解析式为y=kx+b,
把M,N1的坐标得
解得:
∴直线MN1的解析式为y=﹣x+5,
令x=0,得y=5,
∴P点坐标为(0,5).

【解析】(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N1 , 连接MN1 , 交y轴于P(如图),此时PM+PN最小,由N与N1关于y轴的对称,根据N坐标求出N1坐标,设直线MN1的解析式为y=kx+b,把M,N1的坐标代入求出k与b的值,确定出直线MN1的解析式,令x=0求出y的值,即可确定出P坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】清明节,除了扫墓踏青之外,传统时令小吃----青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的倍,4月份鲜花牛奶青团和芒果青团总计销售个,鲜花牛奶青团销售额为元,芒果青团销售额为元.

1)求鲜花牛奶青团和芒果青团的售价?

25月份正值知味观店庆,决定再生产个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的,不多于鲜花牛奶青团的倍,其中,鲜花牛奶青团每个让利元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的,问:知味观如何设计生产方案?使总销售额最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E、F分别在AB、CD上,且BE=DF,EF与AC相交于点P,求证:PA=PC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0, ).

(1)求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1 , △BA′O的面积为S2 , S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1已知 互余 平分

1在图1______ ______

2在图1 请探究之间的数量关系必须写出推理的主要过程但每一步后面不必写出理由);

3在已知条件不变的前提下绕着点O顺时针转动到如图2的位置此时之间的数量关系是否还成立?若成立请说明理由若不成立直接写出此时之间的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,

(1)求反比例函数y= 的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,双曲线y= 与直线y=﹣2x+2交于点A(﹣1,a).

(1)求a,m的值;
(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下面图象表示小红从家里出发去散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,请根据图象,确定下面描述符合小红散步情景的是(  )

A. 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了

B. 从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回

C. 从家里出发,一直散步(没有停留),然后回家了

D. 从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是圆0直径BD延长线上的一点,点C在圆0上,AC=BC,AD=CD.

(1)求证:AC是圆0的切线;
(2)若⊙0的半径为2,求 ABC的面积.

查看答案和解析>>

同步练习册答案