精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.

【答案】y=x2+3x+2y=x2+x﹣2

【解析】

利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式.

解:∵点By轴上,且AOB是等腰直角三角形,A(﹣2,0), ∴点B的坐标为(0,2)或(0,﹣2),

根据题意设平移后抛物线解析式为y=x2+bx+c,

将(﹣2,0)、(0,2)代入得:

解得:

∴此时抛物线解析式为y=x2+3x+2;

将(﹣2,0)、(0,﹣2)代入得:

解得:

∴此时抛物线解析式为y=x2+x﹣2,

综上,平移后抛物线解析式为y=x2+3x+2y=x2+x﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,交y轴于点A.

(1)根据图象确定a,b,c的符号;

(2)如果OC=OA=OB,BC=4,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点F、C是⊙O上两点,且 = = ,连接AC、AF,过点C作CD⊥AF,交AF的延长线于点D,垂足为D,若CD=2 ,则⊙O的半径为(

A. 2 B. 4 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:如图,EF分别是ABCDADBC边上的点,且AE=CF

1)求证:△ABE≌△CDF

2)若MN分别是BEDF的中点,连接MFEN,试判断四边形MFNE是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为m2),种草所需费用1(元)与m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+300000≤≤1000).

(1)请直接写出k1k2和b的值;

(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;

(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理解:

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD下方一点,将PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到PEA,连接EB,问:ABE是什么特殊三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上.将ABC绕点A顺时针旋转90°得到AB1C1

(1)在网格中画出AB1C1

(2)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)

查看答案和解析>>

同步练习册答案