精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,EDC的中点,ADAB2CPBP12,连接EP并延长,交AB的延长线于点FAPBE相交于点O.下列结论:①EP平分∠CEB;②PBEF;③PFEF2;④EFEP4AOPO.其中正确的是(  )

A. ①②③B. ①②④C. ①③④D. ③④

【答案】B

【解析】

由条件设AD=xAB=2x,就可以表示出CP=xBP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=BEP,运用勾股定理及三角函数值就可以求出就可以求出BFEF的值,从而可以求出结论.

解:设AD=xAB=2x

∵四边形ABCD是矩形

AD=BCCD=AB,∠D=C=ABC=90°.DCAB

BC=xCD=2x

CPBP=12

CP=xBP=x

EDC的中点,

CE=CD=x

tanCEP==tanEBC==

∴∠CEP=30°,∠EBC=30°

∴∠CEB=60°

∴∠PEB=30°

∴∠CEP=PEB

EP平分∠CEB,故①正确;

DCAB

∴∠CEP=F=30°,

∴∠F=EBP=30°,∠F=BEF=30°,

∴△EBP∽△EFB

BE·BF=EF·BP

∵∠F=BEF

BE=BF

PB·EF,故②正确

∵∠F=30°,

PF=2PB=x

过点EEGAFG

∴∠EGF=90°,

EF=2EG=2x

PF·EF=x·2x=8x2

2AD2=2×(x2=6x2

∴PF·EF2AD2,故③错误.

RtECP中,

∵∠CEP=30°,

EP=2PC=x

tanPAB==

∴∠PAB=30°

∴∠APB=60°

∴∠AOB=90°

RtAOBRtPOB中,由勾股定理得,

AO=xPO=x

4AO·PO=4×x·x=4x2

EF·EP=2x·x=4x2

EF·EP=4AO·PO.故④正确.

故选,B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与直线交于点,直线轴交于点

(1)求该抛物线的解析式.

(2)是抛物线上第四象限上的一个动点,连接,当的面积最大时,求点的坐标.

(3)将抛物线的对称轴向左平移3个长度单位得到直线,点是直线上一点,连接,若直线上存在使最大的点,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等腰直角三角形中,DE分别在上,且,此时有

(1)如图①中 绕点A旋转至如图②时上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

(2)将图①中的绕点A旋转至DE与直线AC垂直,直线BDCE于点F,若,请画出图形,并求出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.

1)求mn的值;

2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在钝角三角形中,分别以为斜边向的外侧作等腰直角三角形和等腰直角三角形平分于点,取的中点的中点,连接,下列结论:①;②;③;④.其中正确结论有( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知抛物线y=﹣xx3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点OA1,将C1绕点A1旋转180°C2C2x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°C3,与x轴交于另一点A3;将C3绕点A3旋转180°C4,与x轴交于另一点A4,这样依次得到x轴上的点A1A2A3An,及抛物线C1C2nn的顶点坐标为_____n为正整数,用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,sin Asin BAB12MAC的中点,BM的垂直平分线交AB于点N,交BM于点P,那么BN的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BE是它的角平分线,∠C90°DAB边上,以DB为直径的半圆O经过点E,交BC于点F

1)求证:AC是⊙O的切线;

2)已知sinA,⊙O的半径为4,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案