分析 首先化简$\frac{1-(\frac{1}{2016})^{2}}{1+({\frac{1}{2016})}^{2}}$+$\frac{1-(\frac{1}{2015})^{2}}{1+({\frac{1}{2015})}^{2}}$,然后应用加法交换律和加法结合律,求出算式的值是多少即可.
解答 解:$\frac{1-(\frac{1}{2016})^{2}}{1+({\frac{1}{2016})}^{2}}$+$\frac{1-(\frac{1}{2015})^{2}}{1+({\frac{1}{2015})}^{2}}$+$\frac{1-201{5}^{2}}{1+201{5}^{2}}$+$\frac{1-201{6}^{2}}{1+201{6}^{2}}$
=$\frac{{2016}^{2}-1}{1{+2016}^{2}}$+$\frac{{2015}^{2}-1}{1{+2015}^{2}}$+$\frac{1-201{5}^{2}}{1+201{5}^{2}}$+$\frac{1-201{6}^{2}}{1+201{6}^{2}}$
=($\frac{{2016}^{2}-1}{1{+2016}^{2}}$+$\frac{1-201{6}^{2}}{1+201{6}^{2}}$)+($\frac{{2015}^{2}-1}{1{+2015}^{2}}$+$\frac{1-201{5}^{2}}{1+201{5}^{2}}$)
=0+0
=0
故答案为:0.
点评 此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com