【题目】如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.
(1)求证:EG=GF;
(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.
(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)
【答案】(1)证明见解析;(2)成立,理由见解析;(3)成立,图形见解析.
【解析】
(1)先利用HL证明Rt△ABF≌Rt△CDE,从而得到ED=FB,然后再根据AAS证明△BFG≌△DGE,从而可证得EG=FG;
(2)先证AF=EC,然后利用HL证明Rt△ABF≌Rt△CDE,从而得到BF=DE,然后利用AAS证明△BFG≌△DGE,从而可得到EG=FG;
(3)先根据要求画出图形,然后依据HL证明Rt△ABF≌Rt△CDE,从而得到BF=DE,然后利用AAS证明△BFG≌△DGE,从而可得到EG=FG.
解:(1)证明:∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFG=90°.
∵AE=CF,
∴AE+EF=CF+EF.
∴AF=CE.
在Rt△ABF和Rt△CDE中,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中,
∴△BFG≌△DGE(AAS).
∴EG=FG.
(2)解:(1)中结论依然成立.
理由如下:∵AE=CF,
∴AE﹣EF=CF﹣EF.
∴AF=CE.
∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFG=90°.
在Rt△ABF和Rt△CDE中,
∴Rt△ABF≌Rt△CDE(HL).
∴BF=DE.
在△BFG和△DEG中,
∴△BFG≌△DGE(AAS).
∴EG=FG.
(3)(1)中结论依然成立.
如图所示:
理由如下:∵AE=CF,
∴AE+AC=CF+AC.
∴CE=AF.
∵DE⊥AC,BF⊥AC,
∴∠DEG=∠BFA=90°.
在Rt△ABF和Rt△CDE中,
∴Rt△ABF≌Rt△CDE(HL).
∴BF=DE.
在△BFG和△DEG中,
∴△BFG≌△DGE(AAS).
∴EG=FG.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,CD=4,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,将三角尺的直角顶点P落在∠AOB的平分线OC的任意一点上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F。证明:PE=PF。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并回答问题.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
解:ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移项得:x2+x=﹣,第二步
两边同时加上()2,得x2+x+( )2=﹣+()2,第三步
整理得:(x+)2=直接开方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A. 18B. 9
C. 6D. 条件不够,不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A. 若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B. 当k>0时,y随x的增大而减小
C. 过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D. 反比例函数的图象关于直线y=﹣x成轴对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com