精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.

(1)求直线l的解析式;

(2)若直线x=m(m0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当ODAC时,求线段DE的长;

(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)y=;(2)DE=;(3)存在点P(),使∠BAP=BCO﹣BAG,理由见解析.

【解析】

(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;

(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;

(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.

(1)∵抛物线y=x2+x-2,

∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,

∵抛物线y=x2+x-2x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,

∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),

∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,

,得

即直线l的函数解析式为y=x2;

(2)直线EDx轴交于点F,如图1所示,

由(1)可得,

AO=4,OC=2,AOC=90°,

AC=2

OD=

ODAC,OAOC,OAD=CAO,

∴△AOD∽△ACO,

,得AD=

EFx轴,∠ADC=90°,

EFOC,

∴△ADF∽△ACO,

解得,AF=,DF=

OF=4-=

m=-

m=-时,y=×(2+×(-)-2=-

EF=

DE=EF-FD=

(3)存在点P,使∠BAP=BCO-BAG,

理由:作GMAC于点M,作PNx轴于点N,如图2所示,

∵点A(-4,0),点B(1,0),点C(0,-2),

OA=4,OB=1,OC=2,

tanOAC=,tanOCB=,AC=2

∴∠OAC=OCB,

∵∠BAP=BCO-BAG,GAM=OAC-BAG,

∴∠BAP=GAM,

∵点G(0,-1),AC=2,OA=4,

OG=1,GC=1,

AG=,即

解得,GM=

AM==

tanGAM=

tanPAN=

设点P的坐标为(n,n2+n-2),

AN=4+n,PN=n2+n-2,

解得,n1=,n2=-4(舍去),

n=时,n2+n-2=

∴点P的坐标为(),

即存在点P(),使∠BAP=BCO-BAG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】最近,“校园安全”受到全社会的广泛关注,巫溪中学对部分学生就校园安全知识的了解程度, 采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)扇形统计图中“基本了解”部分对应扇形的圆心角为  度;请补全条形统计图;

(2)若达到“了解”程度的人中有1名男生,2名女生,达到“不了解”程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”程度的人中分别抽取1人参加校园知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=﹣x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AEx轴于E.

(1)若OECE=12,求k的值.

(2)如图2,作BFy轴于F,求证:EFCD.

(3)在(1)(2)的条件下,EF=, AB=2,Px轴正半轴上的一点,且PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=90°,ADBCBECDEAD的延长线于FDC=2ADABBE

(1)求证:ADDE

(2)求证:四边形BCFD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2

(1)求BE的长;

(2)求四边形DEBC的面积.

(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有除颜色外其余均相同的5个小球,其中红球3个,黑球2个.

(1)若先从袋中取出xx>0)个红球,再从袋子中随机摸出1个球,将摸出黑球记为事件A,若A为必然事件,则x的值为   

(2)若从袋中随机摸出2个球,正好红球、黑球各1个,用画树状图或列表法求这个事件的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学完二次函数的图像及其性质后,老师让学生们说出的图像的一些性质,小亮说:“此函数图像开口向上,且对称轴是”;小丽说:“此函数肯定与x轴有两个交点”;小红说:“此函数与y轴的交点坐标为(0,-3)”;小强说:“此函数有最小值, ”……请问这四位同学谁说的结论是错误的(   )

A. 小亮 B. 小丽 C. 小红 D. 小强

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+2x﹣1.

(1)写出它的顶点坐标;

(2)当x取何值时,yx的增大而增大;

(3)当x取何值时y的值大于0.

查看答案和解析>>

同步练习册答案