分析 (1)先证BD=DE,再加上AD=DC的条件可直接得出结论;
(2)①先CM=CE=BA,然后由“角角边”定理直接得出结论;
②由M是AE中点,得出CM=EM=AM,再结合CE=CM,可证得△CEM是等边三角形,从而∠CMA=∠ABM=30°.
解答 解:(1)∵点D是线段AC的中点,BE=2BD,
∴AD=CD,DE=BD,
∴四边形ABCE是平行四边形.
(1)①∵四边形ABCE是平行四边形,
∴CE=AB,
∵∠MEC=∠EMC,
∴CM=AB,
在△ABN和△MCN中,
$\left\{\begin{array}{l}{AB=CM}\\{∠BAN=∠CMN}\\{∠ANB=∠MNC}\end{array}\right.$,
∴△ABN≌△MCN(AAS);
②∵∠ACE=∠CAB=90°,M为AE中点,
∴CM=EM=AM,
∵CE=CM,
∴CE=CM=EM,
∴△CEM是等边三角形,
∴∠CME=2∠MCA=60°,
∴∠MCA=30°,
∵△ABN≌△MCN,
∴∠ABM=∠MCA=30°,
∴sin∠ABM=$\frac{1}{2}$.
点评 本题为四边形综合题,主要考查了平行四边形的判定与性质、全等三角形的判定与性质、直角三角形斜边中线定理、等边三角形的判定与性质、特殊角的三角函数等知识点,难度不大,属中档题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com