精英家教网 > 初中数学 > 题目详情

【题目】如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结AB,AC.

(1)求该反比例函数的解析式;

(2)若△ABC的面积为6,求直线AB的表达式.

【答案】(1)反比例函数的解析式为y=;(2)直线AB的解析式为y=﹣x+4.

【解析】

(1)把A的坐标代入反比例函数的解析式即可求得;

(2)作ADBCD,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.

(1)由题意得,k=xy=2×3=6

∴反比例函数的解析式为y=

(2)设B点坐标为(ab),如图

ADBCD,则D(2,b

∵反比例函数y=的图象经过点Bab

b=

AD=3﹣

SABC=BCAD

=a(3﹣)=6

解得a=6

b==1

B(6,1).

AB的解析式为y=kx+b

A(2,3),B(6,1)代入函数解析式,得

解得

直线AB的解析式为y=﹣x+4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于AB两点,则线段AB的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点AB的坐标分别是A(3,1),B(2,3).

(1)请在图中画出△AOB关于y轴的对称△AOB′,点A′的坐标为  ,点B′的坐标为  

(2)请写出A′点关于x轴的对称点A′'的坐标为  

(3)求△AOB′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ADy轴正半轴上,点BC分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-BDO.

1)求证:AC=BC

2)如图2,点C的坐标为(40),点EAC上一点,且∠DEA=DBO,求BC+EC的长;

3)如图3,过DDFACF点,点HFC上一动点,点GOC上一动点,当HFC上移动、点GOC上移动时,始终满足∠GDH=GDO+FDH,试判断FHGHOG这三者之间的数量关系,写出你的结论并加以证明.

(图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:

(1)函数y=自变量的取值范围是   

(2)下表列出了yx的几组对应值:

x

﹣2

m

1

2

y

1

4

4

1

表中m的值是   

(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;

(4)结合函数y=的图象,写出这个函数的性质:   .(只需写一个)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,连接CF,则下列结论,

①BF=AC;

②∠FCD=45°;

若BF=2EC,则FDC周长等于AB的长;

FBD=30°,BF=2,则AF=﹣1.其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组条件中,能够判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDEBCEF,∠A=∠D

C. B=∠E90°,BCEFACDFD. A=∠DABDF,∠B=∠E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.

1)如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是,它是一个无理数.

2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是_____,它是一个无理数.

3)如图,在RtABC中,∠C=90°AC=2BC=1,根据已知可求得AB=_____,它是一个无理数.好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:

①你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?

②学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示-的点吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0t4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;

(3)将AOB绕平面内某点M旋转90°或180°,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

查看答案和解析>>

同步练习册答案