精英家教网 > 初中数学 > 题目详情

【题目】综合探究题 等腰三角形ABC中,AB=x,BC=y,周长为12.

(1)列出关于x,y的二元一次方程;

(2)求该方程的所有整数解.

【答案】(1)见解析;(2)见解析.

【解析】

(1)分ABACBCACABBC三种情况列方程即可求解;(2)分别求出上述三种情况列出的二元一次方程的整数解即可.

(1)分三种情况考虑:

①若AB=AC=x,则2x+y=12;

②若BC=AC=y,则x+2y=12;

③若AB=BC=x=y,则x=y.

(2)①2xy12可得y12-2x,再由三角形的三边关系即可求得方程2xy12的整数解为

x2y12可得x12-2y,再由三角形的三边关系即可求得方程x2y12的整数解为

x=y,根据三角形的三边关系可得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCDOOE⊥AB

1)若∠EOD=20°,求∠AOC的度数;

2)若∠AOC∠BOC=12,求∠EOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.

(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.

(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).

(1)判断AM与PM的数量关系与位置关系并加以证明;

(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线交BE的延长线于点F,连接CF.

(1)试判断四边形ADCF的形状,并证明;

(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式 ,并把解在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=90°时,求证:四边形ADCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )cm.

A.4m
B.4n
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案