精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ABC中,∠A60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分线BDCD交于点D

(1)求∠BDC的度数;

(2)在图1中,过点DDEBD,垂足为点D,过点BBFDEDC的延长线于点F(如图2),求证:BF是∠ABC的平分线.

【答案】(1)BDC=60°(2)证明见解析.

【解析】

(1)依据三角形内角和定理可得,∠ABC+ACB120°,进而得出∠CBM+BCN360°120°240°,再根据∠CBM,∠BCN的平分线BDCD交于点D,即可得到,∠DBC+BCD120°,即可得出∠D180°120°60°

(2)依据DEBDBFDE,即可得出∠2+390°,∠1+490°,再根据∠3=∠4,可得∠1=∠2,进而得到BF是∠ABC的平分线.

解:(1)∵△ABC中,∠A60°

∴∠ABC+ACB120°

又∵∠ABM=∠ACN180°

∴∠CBM+BCN360°120°240°

又∵∠CBM,∠BCN的平分线BDCD交于点D

∴∠CBDCBM,∠BCDBCN

∴△BCD中,∠DBC+BCD(CBM+BCN)×240°120°

∴∠D180°120°60°

(2)如图2,∵DEBDBFDE

∴∠DBF180°90°90°

即∠2+390°

∴∠1+490°

又∵∠3=∠4

∴∠1=∠2

BF是∠ABC的平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:CAB=30°CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据: ≈1.414 ≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次课题学习中活动中,老师提出了如下一个问题:

P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点MN,使点P是线段MN的三等分点,这样的直线能够画几条?

经过思考,甲同学给出如下画法:

如图1,过点PPEABE,EB上取点M,使EM=2EA,画直线MPADN,则直线MN就是符合条件的直线l.

根据以上信息,解决下列问题:

(1)甲同学的画法是否正确?请说明理由.

(2)在图1,能否画出符合题目条件的直线?如果能,请直接在图1中画出.

(3)如图2,A1C1分别是正方形ABCD的边ABCD上的三等分点,A1C1AD.当点P在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条?

(4)如图3,正方形ABCD边界上的A1A2B1B2C1C2D1D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB中,∠O=90°AO=8cmBO=6cm,点CA点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点ECD的垂线EF,则当点C运动了__s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对角线长分别为68的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为(  )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点点出发,沿着以每秒的速度向点运动;同时点点出发,沿以每秒的速度向点运动,设运动时间为秒.

1)当为何值时,

2)是否存在某一时刻,使?若存在,求出此时的长;若不存在,请说理由;

3)当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,乙出发一段时间后速度提高为原来的2倍.两机器人行走的路程y(cm)与时间x(s)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

(1)乙比甲晚出发_________秒,乙提速前的速度是每秒_________cm =_________;

(2)已知甲匀速走完了全程,请补全甲的图象;

(3)当x为何值时,乙追上了甲?

查看答案和解析>>

同步练习册答案