【题目】如图,,是上的一点,,点为上的一动点,点为上的一动点,则的最小值为 ________,当的值取最小值时,则的面积为________.
【答案】2
【解析】
作D点关于AO的对称点D’,当C,P,D’在同一直线上时,取最小值,则CD’=,故当CD’⊥OD’时,CD’最小,根据得到∠BOD’=60°,根据OC=4,利用三角函数即可求出此时的CD’;作PH⊥BO,根据角平分线的性质得到DP’=PH,根据Rt△OPD’求出D’P,再根据三角形的面积公式即可求出的面积.
作D点关于AO的对称点D’,当C,P,D’在同一直线上时,取最小值,
故当CD’⊥OD’时,CD’最小,
如图,∵
∴∠BOD’=60°,
∵OC=4,
∴CD’=OCsin60°=4×=2,
故的最小值为2;
过PH⊥OC,
∵OP平分∠COD’
∴PH=D’P
∵OD’=OCcos60°=4×=2,
∴DP’=OD’tan30°=2×=
故PH=
∴此时S△OPC=OC×PH=×4×=
故答案为:2;.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图: △ABC关于轴对称的图形△;
(2)将点先向上平移个单位,再向右平移个单位得到点的坐标为 ;
(3)△的面积为 ;
(4)若为轴上一点,连接 ,则△周长的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).
(1)求a、k的值;
(2)根据图象,写出不等式﹣x+4>kx+k+1的解;
(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数例如:的友好同轴二次函数为.
请你分别写出,的友好同轴二次函数;
满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?
如图,二次函数:与其友好同轴二次函数都与y轴交于点A,点B、C分别在、上,点B,C的横坐标均为,它们关于的对称轴的对称点分别为,,连结,,,CB.
若,且四边形为正方形,求m的值;
若,且四边形的邻边之比为1:2,直接写出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线L1:y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,在L1上任取一点P,过点P作直线l⊥x轴,垂足为D,将L1沿直线l翻折得到抛物线L2,交x轴于点M,N(点M在点N的左侧).
(1)当L1与L2重合时,求点P的坐标;
(2)当点P与点B重合时,求此时L2的解析式;并直接写出L1与L2中,y均随x的增大而减小时的x的取值范围;
(3)连接PM,PB,设点P(m,n),当n= m时,求△PMB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料一:我们可以将任意三位数记为,(其中、、分别表示该数的百位数字,十位数字和个位数字,且),显然.
材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.
(1)求初始数125生成的终止数;
(2)若一个初始数,满足,且,记,,,若,求满足条件的初始数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验
(1)已知抛物线经过点(-1,0),则= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟
我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于
点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.
(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.
问题解决
(3) 已知抛物线
①若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;
②若抛物线关于点的衍生抛物线为 ,其顶点为;关于点的衍生抛物线为,其顶点为;…;关于点的衍生抛物线为,其顶点为;…(为
正整数).求的长(用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com