精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.

(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

【答案】
(1)证明:∵O是AC的中点,且EF⊥AC,

∴AF=CF,AE=CE,OA=OC,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AFO=∠CEO,

在△AOF和△COE中,

∴△AOF≌△COE(AAS),

∴AF=CE,

∴AF=CF=CE=AE,

∴四边形AECF是菱形


(2)解:∵四边形ABCD是矩形,

∴CD=AB=

在Rt△CDF中,cos∠DCF= ,∠DCF=30°,

∴CF= =2,

∵四边形AECF是菱形,

∴CE=CF=2,

∴四边形AECF是的面积为:ECAB=2


【解析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;
(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.

(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是( )

A.AB∥DC,AD=BC
B.AD∥BC,AB∥DC
C.AB=DC,AD=BC
D.OA=OC,OB=OD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.

(1)若某月用水量为18立方米,则应交水费多少元?

(2)求当x18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:﹣3(2+x)=2(5﹣x).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P(3-2019)在:(

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点(-45)到x轴上的距离是_______,到y轴上的距离是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果x<0,y>0,x+y<0,那么下列关系式中正确的是(
A.x>y>﹣y>﹣x
B.﹣x>y>﹣y>x
C.y>﹣x>﹣y>x
D.﹣x>y>x>﹣y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABC中,∠ACB=90°,D为AB的中点,E在边AB上,AB=12,BC=6,当ED= CD,则CE=

查看答案和解析>>

同步练习册答案