精英家教网 > 初中数学 > 题目详情

【题目】解方程:﹣3(2+x)=2(5﹣x).

【答案】解:去括号得:﹣6﹣3x=10﹣2x, 移项得:﹣3x+2x=10+6,
合并得:﹣x=16,
解得:x=﹣16
【解析】方程去括号,移项合并,把x系数化为1,即可求出解.
【考点精析】本题主要考查了解一元一次方程的步骤的相关知识点,需要掌握先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.

(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(足够长),已知计划中的建筑材料可建围墙的总长度为50m 设饲养室为长为x(m),占地面积为

(1)如图 ,问饲养室为长x为多少时,占地面积y 最大?

(2)如图要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:只要饲养室长比(1)的长多2m就行了.请你通过计算,判断小敏的说法是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.

(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣ x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.

(1)直接写出点B和点D的坐标;
(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;
(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.

为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:

(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是 (只填上正确答案的序号)

q=90v+100;q=

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?

(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.

市交通运行监控平台显示,当12v18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;

在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:x2y﹣y=

查看答案和解析>>

同步练习册答案