【题目】如图1,将矩形纸片ABCD(AD>AB)沿BD折叠,点C落在点C′处.
(1)连接BD,请用直尺和圆规在图1中作出点C′;(不写作法,保留作图痕迹)
(2)若BC′与AD相交于点E,EB与ED的数量关系是 ;连接AC′,则AC′与BD的位置关系是 ;
(3)在(2)的条件下,若AB=4,AD=8,求BE的长.(提示:(2)、(3)两题可以在图2中作出草图完成)
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的解析式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点D,点C为抛物线的顶点,过B,C两点作直线BC,抛物线上的一点F的横坐标是,过点F作直线FG//BC交x轴于点G.
(1)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EF,PF,当的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;
(2)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别为点A′,点C′,连接A′C′,A′K,C′K,A′C′K是否能为等腰三角形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=2x2+bx+c经过(﹣3,0),(1,0)两点
(1)求抛物线的解析式,并求出其开口方向和对称轴
(2)用配方法求出该抛物线的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形中,,交边于点.
(1)当点与恰好重合时(如图1),求的长;
(2)问:是否可能使、与都相似?若能,请求出此时的长;若不能,请说明理由(如图2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,已知,,,点在的延长线上,点在的延长线上,有下列结论:①;②;③;④若,则点到的距离为.则其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com