精英家教网 > 初中数学 > 题目详情

【题目】如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____

【答案】27°.

【解析】

延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.

延长FA与直线MN交于点K,

由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,

因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,

所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,

所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.

∠ACD的度数是:27°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD平分∠BAC,∠EAD=∠EDA.

(1)∠EAC与∠B相等吗?为什么?

(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AEBF,AC平分BAE,且交BF于点C,BD平分ABF,且交AE于点D,AC与BD相交于点O,连接CD

(1)求AOD的度数;

(2)求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ACDE是证明勾股定理时用到的一个图形,abcRtABCRtBED边长,易知AE=c这时我们把关于x的形如ax+cx+b=0的一元二次方程称为“勾系一元二次方程”.

请解决下列问题

写出一个“勾系一元二次方程”;

求证关于x的“勾系一元二次方程”ax+cx+b=0必有实数根

x=1是“勾系一元二次方程”ax+cx+b=0的一个根且四边形ACDE的周长是ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间(单价:min)之间的关系如图所示。在第_______分钟时该容器内的水恰好为10L.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数 =7,方差 =1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.

(1)求证:四边形AECF是平行四边形;

(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ABOC为数轴上四点,点A对应数aa﹣2),点O对应0,点C对应3AB=2 AB表示点A到点B的距离).

1)填空:点C到原点O的距离   ,:点B对应的数   .(用含有a的式子)

2)如图2,将一刻度尺放在数轴上,刻度尺上“6cm”“8.7cm”分别对应数轴上的点O和点C,若BC=5,求a的值和点A在刻度尺上对应的刻度.

3)如图3,在(2)的条件下,点A1单位长度/秒的逮度向右运动,同时点C向左运动,若运动3秒时,点A和点C到原点D的距离相等,求点C的运动速度.)

查看答案和解析>>

同步练习册答案