【题目】如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,点C、D分别在边OA、OB上的点.连接AD,BC,点H为BC中点,连接OH.
(1)如图1,求证:OH=AD,OH⊥AD;
(2)将△COD绕点O旋转到图2所示位置时,⑴中结论是否仍成立?若成立,证明你的结论;若不成立,请说明理由.
【答案】(1)见解析;(2)成立,证明见解析
【解析】
(1)只要证明△AOD≌△BOC(SAS),即可解决问题;
(2)如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,证明△BEH≌△CHO(SAS),可得OE=2OH,∠EBC=∠BCO,证明△BEO≌△ODA(SAS)即可解决问题;
(1)∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°.
∴OC=OD,OA=OB
在△AOD与△BOC中
∴△AOD≌△BOC(SAS)
∴∠ADO=∠BCO,∠OAD=∠OBC,BC=AD
∵点H是BC的中点,∠AOB=90°
∴OH=HB=
∴∠OBH=∠HOB=∠OAD,OH=
∵∠OAD+∠ADO=90°
∴∠ADO+∠BOH=90°
∴OH⊥AD
(2)(1)中结论成立;如图,延长OH到E,使得HE=OH,连接BE,CE
∵CH=BH
∴四边形BOCE是平行四边形
∴BE=OC,EB∥OC,OH=OE
∴∠EBO+∠COB=180°
∵∠COB+∠BOD=90°,∠BOD+∠1=90°
∴∠1=∠COB
∵∠AOD+∠1=180°
∴∠AOD=∠EBO
∴△BEO≌△ODA
∴∠EOB=∠DAO,OE=AD
∴OH=AD
∴∠DAO+∠AOH=∠EOB+∠AOH=90°
∴OH⊥AD
【点晴】
本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质,三角形三边关系等知识,构造全等三角形解决问题是解题的关键.
科目:初中数学 来源: 题型:
【题目】如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN. 其中错误的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,分别沿矩形纸片ABCD和正方形EFGH纸片的对角线AC,EG剪开,拼成如图2所示的平行四边形KLMN,若中间空白部分恰好是正方形OPQR.
(1)若AB=m,BC=n,用含m、n的代数式表示正方形EFGH的边长;
(2)若正方形EFGH的面积为25,求平行四边形KLMN的面积;
(3)平行四边形KLMN是否能为菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.
(1)求证:BD=CD;
(2)若圆O的半径为3,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生对各种球类运动的喜爱程度,小明采取随机抽样的方法对他所在学校的部分学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一种项目),对调查结果进行统计后,绘制了下面的统计图(1)和图(2).
(1)此次被调查的学生共有___人,m=_____;
(2)求喜欢“乒乓球”的学生的人数,并将条形统计图补充完整;
(3)若该校有2000名学生,估计全校喜欢“足球”的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE、BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF其中正确的结论是( )
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知,,且,的面积为3.
(1)直接写出 , , .
(2)如图①,设交轴于,交轴于点,、的角平分线交于点,求的大小.
(3)如图②,点是延长线上动点,轴于点,平分,直线于,交于点,平分交轴于点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(分)周末,小英与她的父亲、母亲计划从西安外出旅游,初步选择了位于西安东线的景点:兵马俑, :华山,以及位于西线的景点:太白山, :法门寺, :杨凌现代农业示范园.由于时间仓促,他们只能去其中的两个景点,并且希望两个景点能位于一条线路上.到底去哪两个景点,三人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸卡片游戏来决定.规则如下:在五个背面完全相同的卡片上写上五个景点的代号,然后洗匀,背面朝上放在桌面上,让小英随机摸出一张,不放回,然后让小英母亲再随机摸出一张.照上面的规则,请你解答下列问题:
()己知小英的理想旅游景点是兵马俑,求小英摸出写有的卡片的概率.
()求小英和母亲摸出的景点位于一条线上(东线或西线)的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3,E,F 分别是AB,BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM;
(2)当AE=1时,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com