【题目】如图,△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕点C逆时针旋转得到△A1B1C,旋转角α(0°<α<90°),连接BB1,设CB1交AB于D,AlB1分别交AB,AC于E,F.
(1)求证:△BCD≌△A1CF;
(2)若旋转角α为30°,
①请你判断△BB1D的形状;
②求CD的长.
【答案】(1)证明见解析;(2)①△BB1D是等腰三角形.②-1.
【解析】试题分析:
(1)①由AC=BC可得∠A=∠ABC;②由△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C可得:∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α;①②结合可得:∠A1=∠CBD,A1C=BC,这样由“ASA”可证得△BCD≌△A1CF;
(2)①由CB=CB1,∠BDB1=α+∠CBA,α为30°,证明∠BDB1=∠BBD=75°可得BD=BB1,从而可得△BB1D是等腰三角形;
②过点D作DG⊥BC于点G,设DG=x,则由∠DBC=45°,α为30°可得:BG=x,CD=2x,CG=2-x,然后在Rt△CDG中由勾股定理建立方程解出x的值,即可求得CD的长.
试题解析:
(1)证明:(1)∵AC=BC,
∴∠A=∠ABC.
∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,
∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.
∴∠A1=∠CBD,A1C=BC.
在△CBD与△CA1F中,
,
∴△BCD≌△A1CF(ASA).
(2)解:①△BB1D是等腰三角形,理由如下:
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°.
又由旋转的性质得到BC=B1C,则∠CB1B=∠CBB1,
∴∠CB1B=∠CBB1==75°.
又∵∠BDB1=∠ABC+α=45°+30°=75°,
∴∠BDB1=∠DB1B=75°,
∴BD=BB1,
∴△BB1D是等腰三角形.
②如图,过D作DG⊥BC于G,设DG=x,
∵ɑ=30°,∠DBE=45°,
∴BG=x,CG=CB-BG=2-x,DC=2x,
又∵在Rt△CDG中,CD2=DG2+CG2,
∴,解得: (不合题意,舍去),
∴CD=2x=.
科目:初中数学 来源: 题型:
【题目】阅读下列材料,完成下列各题:平面内的两条直线有相交和平行两种位置关系。
(1)如图1,若,点P在AB,CD之间,求证:∠BPD=∠B+∠D;
(2)在图1中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图2,请写出,∠B,,之间的数量关系并说明理由;
(3)利用(2)的结论,求图3中+∠G=n×90°,则n=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是正方形,点E、F分别是BC、CD边的中点,连结AE、BF交于点P,连结DP.
(1)求证:AE⊥BF.
(2)求证:PD=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:
(1)甲和乙哪一个出发的更早?早出发多长时间?
(2)甲和乙哪一个早到达B城?早多长时间?
(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?
(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD
(1)求∠AOD的度数;
(2)求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买10辆全新的混合动力公交车,现有两种型号,它们的价格及年省油量如下表:
型 号 | ||
价格(万元/辆) | ||
年省油量(万升/辆) | 2.4 | 2 |
经调查,购买一辆型车比购买一辆型车多20万元,购买2辆型车比购买3辆型车少60万元.
(1)请求出和的值;
(2)若购买这批混合动力公交车(两种车型都要有), 每年能节省的油量不低于22.4万升,请问有几种购车方案?(不用一一列出)请求出最省钱的购车方案所需的车款.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图(1)).令△ABD不动,
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图(2)),证明:MB=MC.
(2)若将图(1)中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图(3)),判断MB、MC的数量关系,并说明理由.
(3)在(2)中,若∠CAE的大小改变(图(4)),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com