【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,请直接写出弧AE的长.
【答案】(1)证明见解析;(2).
【解析】
(1)连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;
(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用弧长公式即可得出结论.
(1)证明:如图,连接OD,
∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC,
∵过点D作⊙O的切线DF,交AC于点F,
∴DF⊥OD,
∴DF⊥AC.
(2)解:如图,连接OE,
∵DF⊥AC,∠CDF=22.5°,
∴∠ABC=∠ACB=67.5°,
∴∠BAC=45°,
∵OA=OE,
∴∠AOE=90°,
∵⊙O的半径为4,
∴弧AE的长为.
科目:初中数学 来源: 题型:
【题目】(10分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BPPC=ABCD(不需证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,结论BPPC=ABCD仍成立吗?请说明理由?
拓展:如图③,在△ABC中,点P是BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=4 ,CE=3,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为 时,四边形AOCE是菱形;
②若AE=6,EF=4,DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=-(x+4)(x-4)与x轴交于A、B两点,与y轴交于C点,⊙C的半径为2.G为⊙C上一动点,P为AG的中点,则OP的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线相应的函数表达式;
(2)点M是线段BC上的点(不与B、C重合),过M作MN∥y轴交抛物线于N,连接NB.若点M的横坐标为t,是否存在t,使MN的长最大?若存在,求出sin∠MBN的值;若不存在,请说明理由;
(3)若对一切x≥0均有ax2+bx+c≤mx-m+13成立,求实数m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,将点P绕点T(t,0)(1>0)旋转180°得到点Q,则称点Q为点P的“发展点”.
(1)当t=2时,点(0,0)的“发展点”坐标为______,点(-1,-1)的“发展点”坐标为______.
(2)若t>3,则点(3,4)的“发展点”的横坐标为______(用含t的代数式表示).
(3)若点P在直线y=2x+6上,其“发展点”Q在直线y=2x-8上,求点T的坐标.
(4)点P(3,3)在抛物线y=-x2+k上,点M在这条抛物线上,点Q为点P的“发展点”.若△PMQ是以点M为直角顶点的等腰直角三角形,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2.
(1)求m的取值范围;
(2)如果这个方程的两个实根分别为x1=α,x2=β,且α<β,当m>0时,试比较α,β,2,3的大小,并用“<”连接;
(3)求二次函数y=(x-x1)(x-x2)+m的图像与x轴的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,交BA的延长线于点F,若弧EF的长为π,则图中阴影部分的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com