精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC内接于O,∠AOC=∠ABCAC5,则O的半径长为_____

【答案】

【解析】

所对的圆周角∠APC,作OHACH,根据圆周角定理和圆内接四边形的性质可得∠AOC120°,则∠OAC=∠OCA30°,再根据垂径定理得到AHCHAC ,最后根据直角三角形30度所对的边为斜边的一半即可解答.

解:作所对的圆周角∠APC,作OHACH,如图,

∵∠APC+ABC180°,∠AOC2APC

AOC+ABC180°,

∵∠AOC=∠ABC

AOC+AOC180°,解得∠AOC120°,

∴∠OAC=∠OCA30°,

OHAC

AHCHAC

RtOAH中,OHAH

OA2OH

O的半径长为

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)yx的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)若在销售过程中每一件商品有a(a>1)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满元,均可得到一次摸奖的机会.在一个纸盒里装有个红球和个白球(编号分别为红1、红、白1、白),除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如表)

甲超市:

两红

--红一白

两白

礼金券()

乙超市:

两红

--红一白

两白

礼金券()

1)列举出一次摸奖时两球的所有情况;

2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.

1)请写出之间的函数表达式;

2)当为多少时,超市每天销售这种玩具可获利润2250元?

3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.

1)请你在图中画出小亮站在AB处的影子BE

2)小亮的身高为1.6m,当小亮离开灯杆的距离OB2.4m时,影长为1.2m,若小亮离开灯杆的距离OD6m时,则小亮(CD)的影长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地教育部门为学生提供了四种在线学习方式:阅读、听课、答疑、讨论,并对部分学生作了“最感兴趣的在线学习方式”网络调查(只选择一类),把调查结果绘制成如下两幅尚不完整的统计图:

根据图中信息,回答下列问题:

1)本次调查的人数有   人;在扇形统计图中,“在线答疑”所在扇形的圆心角度数是   

2)补全条形统计图;

3)在随机调查的学生中,甲、乙两位同学选择同类“最感兴趣的在线学习方式”的概率是否等于?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A﹣10)和B30)两点,交y轴于点E

1)求此抛物线的解析式.

2)若直线y=x+1与抛物线交于AD两点,与y轴交于点F,连接DE,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】高尔基说:书,是人类进步的阶梯.阅读可以丰富知识、拓展视野、充实生活等诸多益处.为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下统计图,其中条形统计图因为破损丢失了阅读5册书数的数据.

1)求条形图中丢失的数据,并写出阅读书册数的众数和中位数;

2)根据随机抽查的这个结果,请估计该校1200名学生中课外阅读5册书的学生人数;

3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中,AE平分DACAECD于点FCEAE,垂足为点EEGCD,垂足为点G,点H在边BC上,BHDF,连接AHFHFHAC交于点M.下面结论:FH2BHACFHDF1 EG2FGDG.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案