精英家教网 > 初中数学 > 题目详情

【题目】如图已知正五边形ABCDEMCD的中点连接ACBEAM.

求证:(1)ACBE

(2)AMCD.

【答案】见解析

【解析】(1)先证明△ABC≌△EAB:AB=BC,AE=BA,ABC=EAB,所以全等,所以AC=BE;(2)连接AD,易证AC=AD(三角形ABC全等于三角形AED),所以三角形ACD为等腰三角形,MCD中点,所以AM垂直于CD

解:(1)由五边形ABCDE是正五边形,得ABAE,∠ABC=∠BAEABBC

∴△ABC≌△EAB,∴ACBE.

(2)连接AD,由五边形ABCDE是正五边形,得ABAE,∠ABC=∠AEDBCED

∴△ABC≌△AED

ACAD.

又∵MCD的中点,

AMCD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:

(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;

(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?

(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°BC=5C=30°.D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(t0.过点DDFBC于点F,连接DEEF.

1)求证:AE=DF

2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

3)当t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCDAC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.

1)求证:四边形ABCD是菱形.

2)填空:

①当∠ADC= °时,四边形ACEB为菱形;

②当∠ADC=90°,BE=4时,则DE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有一张宽为12 cm的练习纸,相邻两条格线间的距离均为0.6 cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα.

(1)求一个矩形卡通图案的面积;

(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )

A. 该村人均耕地面积随总人口的增多而增多

B. 该村人均耕地面积y与总人口x成正比例

C. 若该村人均耕地面积为2公顷,则总人口有100人

D. 当该村总人口为50人时,人均耕地面积为1公顷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABC是等边三角形,AE=CD,BQADQ,BEAD于点P,下列说法:①∠APE=C,AQ=BQ,BP=2PQ,AE+BD=AB,其中正确的个数有( )个。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,请求出木板CD的长度?

(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD的长AB=30,BC=20.

(1)如图①若在矩形ABCD的内部沿四周有宽为1的环形区域矩形A′B′C′D′与矩形ABCD相似吗?请说明理由;

(2)如图②x为多少时矩形ABCD与矩形A′B′C′D′相似?

查看答案和解析>>

同步练习册答案