【题目】如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.
(1)求证:四边形ABCD是菱形.
(2)填空:
①当∠ADC= °时,四边形ACEB为菱形;
②当∠ADC=90°,BE=4时,则DE=
【答案】(1)见解析;(2)①60 ;②.
【解析】
(1)由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABCD为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABCD是菱形.
(2)①由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABEC是菱形,则CA=AD=DC,此时三角形ADC为等边三角形,∠ADC=60°;②当∠ADC=90°时,四边形ABCD为正方形,三角形BCE为等腰直角三角形,因为BE=4,所以由勾股定理得CE= ,.
解:(1)证明:∵AC垂直平分BD,∴AB=AD ,BF=DF,
∵AB∥CD,∴∠ABD=∠CDB.
∵∠AFB=∠CFD,∴△AFB≌△CFD (ASA),
∴AB=CD.又∵AB∥CD,∴四边形ABCD是平行四边形 .
∵AB=AD,∴平行四边形ABCD是菱形 .
(2)①∵由(1)得:四边形ABCD是菱形,
∴AB=CD,AB//CD,
∵CE是CD的延长线,且CE=CD,
∴由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC为平行四边形
∵假设四边形ACEB为菱形,∴AC=CE
∵已知AD=DC,∴AC=DC=AD,即三角形ADC为等边三角形,∴
②∵由(1)得:四边形ABCD是菱形,且∠ADC=90°
∴四边形ABCD为正方形,三角形BCE为直角三角形,
∵CE=CD,∴由勾股定理得CE= ,.
科目:初中数学 来源: 题型:
【题目】已知⊙O是等边三角形ABC的外接圆,P为劣弧BC上一点(点P与点B,C不重合).
(1)如果P是劣弧BC的中点,求证:PB+PC=PA;
(2)当点P在劣弧BC上移动时,(1)中的结论还成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.
过点C画线段AB的平行线CD;
过点A画线段BC的垂线,垂足为E;
过点A画线段AB的垂线,交线段CB的延长线于点F;
线段AE的长度是点______到直线______的距离;
线段AE、BF、AF的大小关系是______用“”连接
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=,求BE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,当点P运动到AB中点时,它所表示的数是 ;
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?
(3)动点Q从点B出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:
①当点P运动多少秒时,点P追上点Q?
②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC 的三个顶点的位置如图所示,点 A′的坐标是(-2,2),现将△ABC 平移,使点 A 变换为点 A′,点 B′、C′分别是 B、C 的对应点.
(1) 请画出平移后的△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′ 、C′ ;
(2) 若△ABC 内部一点 P 的坐标为(,),则点 P 的对应点 P′的坐标是 ;
(3) 连接 A′B,CC′,并求四边形 A′BCC′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC=∠BCD=90°,点E在BC边上,∠AED=90°
(1)求证:∠BAE=∠CED;(2)若AB+CD=DE,求证:AE+BE=CE
(3)在(2)的条件下,若△CDE与△ABE的面积的差为18,CD=6,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com